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Visplause: Visual Data Quality Assessment
of Many Time Series Using Plausibility Checks

Clemens Arbesser, Florian Spechtenhauser, Thomas Mühlbacher, and Harald Piringer

Abstract—Trends like decentralized energy production lead to an exploding number of time series from sensors and other sources
that need to be assessed regarding their data quality (DQ). While the identification of DQ problems for such routinely collected data
is typically based on existing automated plausibility checks, an efficient inspection and validation of check results for hundreds or
thousands of time series is challenging. The main contribution of this paper is the validated design of Visplause, a system to support
an efficient inspection of DQ problems for many time series. The key idea of Visplause is to utilize meta-information concerning the
semantics of both the time series and the plausibility checks for structuring and summarizing results of DQ checks in a flexible way.
Linked views enable users to inspect anomalies in detail and to generate hypotheses about possible causes. The design of Visplause
was guided by goals derived from a comprehensive task analysis with domain experts in the energy sector. We reflect on the design
process by discussing design decisions at four stages and we identify lessons learned. We also report feedback from domain experts
after using Visplause for a period of one month. This feedback suggests significant efficiency gains for DQ assessment, increased
confidence in the DQ, and the applicability of Visplause to summarize indicators also outside the context of DQ.

Index Terms—Data Quality Assessment, High-Dimensional Data, Hierarchical Aggregation, Linked Views

1 INTRODUCTION

Ensuring a sufficient data quality (DQ) is essential for data-driven
tasks like analysis, modeling, and reporting. Problems such as miss-
ing data, wrong data, and duplicates may prevent an application of
analytical methods or may cause unusable or misleading results [12].
DQ management is thus of central practical relevance. However, nu-
merous sources emphasize that ensuring an appropriate DQ is time-
consuming [18] and requires the involvement of domain experts [13].
DQ may account for up to 80% of the time and cost in data warehous-
ing projects [5].

The background and initial motivation of this work are challenges
regarding DQ assessment in the energy sector. In this application do-
main, measurements of power generation, consumption, and meteo-
rological quantities are continuously acquired. The DQ of the corre-
sponding time series needs to be assessed before subsequent process-
ing steps like forecasting and accounting. The identification of DQ
problems for such routinely collected data is typically based on auto-
mated plausibility checks ranging from simple validation routines to
advanced approaches for anomaly detection [4, 13]. In case of a small
number of checks for a few sensors, the inspection of check results
using standard visualizations such as time series plots is feasible.

In recent years, however, the number of sensors and corresponding
time series has been increasing rapidly due to trends like decentralized
energy production. For example, transmission system operators need
to process data from hundreds or even thousands of small-scale power
plants such as photovoltaic plants, windmills, and small hydropower
plants in regular intervals, e.g., weekly or monthly. With the advent of
smart meters, the number of sensors will further explode by multiple
orders of magnitudes. Similar explosions in the dimensionality of ac-
quired sensor data can also be observed in other application contexts
such as advanced manufacturing. This suggests that the problem of
DQ assessment in many time series is of general importance. Besides
the sheer number of involved time series, additional challenges of DQ
assessment include the diversity of plausibility checks, the validation
of automated anomaly detection results, and the usually very tight time
constraints of operators and analysts for a detailed inspection of the
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data. While communicating the results of analytical techniques for as-
sessing DQ is considered an important research topic in general [18],
these particular challenges have not yet been sufficiently addressed by
the visualization literature so far.

In this paper, we argue that meta-information about the time se-
ries and plausibility checks can significantly contribute to an effec-
tive inspection of DQ problems for large numbers of time series. For
power generation time series, for example, meta-information includes
the location of the power-plant as well as its type, operator, and so
on. Meta-information also refers to the plausibility checks themselves
and involves, e.g., the type of detected DQ problem and check-specific
parameters. This meta-information enables to structure the potentially
large number of plausibility checks in a way that is both flexible and
meaningful to the analyst.

The main contribution of this paper is the validated design of Vis-
plause, a system to support an effective inspection of DQ problems
in many time series. The key idea of Visplause is to utilize meta-
information about time series and plausibility checks for structuring
and summarizing results of DQ checks in a flexible way. Linked views
enable users to inspect anomalies in detail and to generate hypotheses
about possible causes.

Following guidelines in design study methodology [33], additional
contributions include:

• A characterization of involved tasks and a set of identified goals
that guided the design of Visplause.

• Detailed reflections on the design process by explicitly dis-
cussing design decisions and identifying lessons learned at four
design stages.

• Qualitative feedback from domain experts in the energy sector
after using Visplause for a period of one month.

2 TASKS AND DATA

We started this project with a thorough analysis of the work domain.
Based on collaborations with two partner companies in the energy
sector, we identified recurring DQ assessment tasks (Sec. 2.1), from
which we derived our design goals (Sec. 2.2). Afterwards, we provide
a description of the data model assumed in this paper (Sec. 2.3).

2.1 Task Analysis
This work is motivated by an ongoing collaboration with partners in
the energy sector since 2012, i.e., a transmission system operator and
an IT-solution provider servicing more than 40 energy companies. Do-
main experts in these companies utilize regularly acquired time series
data for power grid control and risk management. Most of their tasks
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Fig. 1. The data model of Visplause. Time series and plausibility checks carry meta-information. Plausibility checks mark incoming time series as
‘check indication’ or ‘no indication’ based on the automated evaluation of check rules.

involve a daily monitoring and DQ assessment of newly acquired data
(e.g., prices, consumption, weather, etc.). Data-driven modeling activ-
ities such as building or validating forecast models based on longer
time series are typically performed in less frequent intervals (e.g.,
monthly). The routine DQ assessment of newly acquired data based on
plausibility checks is an important, frequent, and time-critical activity.

Throughout four years of collaboration, insights gained from joint
data analysis sessions, semi-structured interviews, and contextual in-
quiries [15] with 11 domain experts from multiple business units en-
abled us to identify recurring tasks of DQ assessment. While DQ as-
sessment is a multi-faceted topic and previous work has addressed cer-
tain subtasks (e.g., [11, 17]), we stress that our focus are tasks concern-
ing the regular inspection and validation of identified DQ problems
using existing plausibility checks. The detection of previously uniden-
tified problems, as well as the correction of problems by modifying or
imputing data, are out of scope.
T1 - Routine DQ assessment for a specific use
This task is usually done as preparation for downstream processing
(see T2 and T3) or for reporting. In some cases, the DQ may be insuf-
ficient for certain uses and sufficient for others. This task entails the
following sub-tasks, with concrete examples in italics:
• Summarization - Assess the overall DQ in terms of the proportion

of time series and data records afflicted by DQ problems. “Can the
data be used as it is, or are there DQ issues to investigate further
before proceeding with downstream tasks?”

• Drill-down - Investigative drill-down on DQ problems by time series
or checks to (1) localize problems and to (2) compare problem oc-
currence across different sources. “Which time series are afflicted by
the issues indicated by the summary? Is time series X more afflicted
than time series Y?”

• Temporal characterization - Assessment of the temporal distribu-
tion of check indications concerning linear aspects (e.g., gradually
increasing problem frequencies) and cyclic aspects (e.g., peaks at
certain times of day). “Is this an isolated anomaly, or does it occur
in a regular pattern?”

T2 - Hypothesis generation about DQ problem causes
Causes of problems may refer to the data-generating process (i.e., the
data source), the data transformation and management, or to the plau-
sibility checks themselves in case of false positives. The task may
entail further investigation of the hypotheses and the communication
to responsive stakeholders (e.g., data providers, IT departments).
• Inspection of details - Inspect specific time series and single values

for investigating and validating DQ problems. “This pattern looks
like a gradually failing sensor.”, or “These are all false positives.
Maybe we need to recalibrate the check?”

• Correlation analysis - Identify potential relationships between indi-
cation patterns and possible explanatory time series. “Are there any
weather conditions in which this problem occurs particularly often?”

T3 - DQ-aware selection and export of data
This task involves an efficient selection and export of subsets of data

records and time series that satisfy certain DQ constraints for down-
stream processing or upstream reporting, without introducing a selec-
tion bias. “For training a forecast model, time series with too many
outliers can not be used. Is my selection of clean data records still
representative for all weather conditions/months of the year?”

2.2 Design Goals
The following set of goals guided the design process of our proposed
system. Most aspects of these goals were established based on the task
analysis, while some aspects became clearer throughout the design
process, as described in Section 5.
G1 - Fast and efficient overall DQ assessment
To support the efficient assessment of routinely collected data (T1),
the system should efficiently summarize the overall DQ. This entails
appropriate default configurations and support for sorting and filtering.
G2 - Flexible in-depth analysis of check results
The identified tasks (T1-T3) involve an assessment of the DQ on mul-
tiple aggregation levels: (1) Global summarization (e.g., overall DQ),
(2) Local summarization in terms of meaningful subsets of time se-
ries (e.g., DQ per power plant), types of checks (e.g., DQ per problem
type) and temporal aspects (e.g., DQ per month), and (3) on the level
of individual DQ issues (e.g., outliers). The choice of and the naviga-
tion between aggregation levels should be flexible, fast and intuitive.
The system should also support the selection of data subsets on any of
the available aggregation levels (T3).
G3 - Scalability to large numbers of time series, checks and indi-
vidual observations
In the energy sector, data is often acquired by a large number of sen-
sors (> 100) over long periods of time (up to several years) and/or at
high frequencies (e.g., one measurement per second). Therefore, the
system design should scale for up to hundreds of time series, each with
up to millions of data values and multiple plausibility checks.
G4 - Scalable visual complexity
To accommodate tasks of varying complexity and users of varying ex-
perience, the visual complexity of the system needs to be adjustable.
Regular monitoring and reporting tasks should be easy to accomplish,
while expert users should not be limited regarding view configuration.
G5 - Workflow integration
The system should naturally fit into the DQ management workflow
of analysts in the energy sector. It should therefore support (1) the
import of time series with meta-information via common exchange
formats like CSV or SQL, (2) the re-use of existing plausibility checks,
and (3) the export of currently selected data (T3). In favor of a broad
applicability, the system should allow making use of existing semantic
information about time series or checks, but it should not require the
presence of any particular meta-information property.

2.3 Data Model
Fig. 1 illustrates a very simple example of a typical data model in the
context of energy-related time series. The model distinguishes time

series and plausibility checks on these time series. In related data qual-
ity literature, plausibility checks are often termed ‘quality checks’ or
‘anomaly detection algorithms’ [11, 17]. Each plausibility check (sub-
sequently abbreviated as check) evaluates a rule or anomaly detection
algorithm to test values from one or more time series for the presence
of a particular DQ problem. The result of each check is a binary clas-
sification of data values as ‘indication’ or ‘no indication’.

Time series and checks have meta-information, consisting of prop-
erties such as the sensor type (distinguishing power production from
meteorological quantities), the location, the operator, and many more.
Properties may also be undefined for some time series. For example,
meteorological sensors do not have a power plant operator. Checks
adopt non-ambiguous meta-information of their underlying time se-
ries and have additional properties such as the severity or classifica-
tion of the detected DQ problem. This enables an application-specific
incorporation of various DQ taxonomies (see Sec. 3).

We emphasize that the meta-information properties refer to time se-
ries and checks themselves, not to individual data values. Similar to
work by Turkay et al. [45], meta-information represents an orthogo-
nal aspect which is necessary to structure the potentially very high-
dimensional data table of the actual time series and checks. We also
note that a very similar distinction of energy time series vs. meta-
information has been made in recent work by Brehmer et al. [3], how-
ever, their data model does not include plausibility checks.

3 RELATED WORK

Data quality (DQ) has long been a topic of intensive research in mul-
tiple fields [32]. A widely agreed definition of the term ‘data quality’
from the consumer’s point of view is fitness for use [46].

There are different approaches to characterizing DQ. Multiple re-
searchers identified dimensions of DQ [2, 28] such as availability, con-
sistency, and reliability. Other taxonomies focus on the classification
of particular problems like missing, wrong, and unusable data [22]
and their sources [30]. Gschwandtner et al. [12] summarize several
taxonomies and provide an own taxonomy of dirty time-oriented data.
A classification of DQ issues according to most of these taxonomies
can be represented by our data model using check meta-information
properties (see Sec. 2.3).

The automated detection of DQ problems such as anomalies has
long been a key topic in statistics and data base management [4, 13].
Identifying possible DQ problems, however, often requires an intu-
ition of the data and possible problems. Exploratory visualization is
suitable to provide this intuition [20, 48]. In this sense, well-known
systems like Tableau [40], Spotfire [44], GGobi [39], and many others
are all relevant for DQ assessment. While these systems provide ver-
satile general-purpose aggregation of data dimensions, we found that
the support for structuring high-dimensional data was limited (G3).

Kandel et al. [18] describe DQ assessment as a visualization oppor-
tunity in the broader context of data wrangling. TimeCleanser [11], for
example, supports the process of correcting DQ issues in time-oriented
data, but offers limited flexibility for analyzing the results of plausibil-
ity checks. Most importantly, our focus is on the inspection of check
results, not on the modification of data.

Multiple approaches explicitly convey DQ aspects during visual
analysis. Ward et al. [47] describe strategies for the measurement, dis-
play, and utilization of quality aspects at all stages of the visualization
pipeline. Sulo et al. [38] highlight DQ problems like duplicates and
missing values in a tabular visualization on a data-record level, but do
not support aggregation, which limits the scalability. Other work fo-
cuses on missing data. This issue is repeatedly mentioned as important
for visual analytics systems [18, 49] and there are several studies on
displaying missing data [7, 9, 42, 43]. However, most of this work adds
information to existing visualizations and does not provide overview
and drill-down (G2) regarding data completeness.

Several approaches have been suggested to visualize data anoma-
lies in sensor networks. Shi et al. [35] facilitate sensor failure diag-
nosis by expert users based on topological, correlational, and dimen-
sional views of anomalies. Steiger et al. [37] use dimension reduction
for identifying anomalous patterns. Both focus on identifying anoma-

lous patterns, whereas we assume the existence of suitable plausibility
checks and focus on the analysis of their results (G2). In this paper,
we adopt the suggestion of Turkay et al. [45] to use structural meta-
information about high-dimensional datasets in order to break down
the data dimensions into a manageable number of meaningful subsets.

Several commercial systems provide coarse summaries of DQ in-
dicators also for non-expert users. The Talend Open Studio for Data
Quality [41] visualizes the results of pre-defined or user-defined qual-
ity indicators and highlights DQ problems in corresponding tables.
IBM Watson Analytics [16] assigns an overall DQ score to a data set
and to individual data attributes. However, both Talend and IBM Wat-
son rely on mostly static diagrams for result presentation with limited
possibilities for drill-down or an interactive validation of plausibility
check results.

Many visualization systems support anomaly detection. Janetzko et
al. [17], for example, visualize the results of an anomaly detection of
power consumption data. Their pixel-based approach uses topological
information about the data sources to draw a quadtree. We regard Pro-
filer [19] as the most related system. Profiler uses data mining methods
to automatically flag problematic data for a visual summary, structured
by problem class. Mutual information measures suggest binned views
for a detailed yet scalable analysis of these problems. However, neither
of these systems support a flexible DQ analysis on multiple aggrega-
tion levels using more general meta-information of both data attributes
and checks (G2). Moreover, the schema and anomaly browsers of Pro-
filer only provide a list of data attributes, which limits its applicability
for the DQ assessment of many time series.

4 DESCRIPTION OF VISPLAUSE

This section describes our system Visplause based on a guiding data
example from the energy sector. The intention is to illustrate the ap-
plicability of the system to address the identified tasks, while Sec. 5
provides detailed design justifications with respect to alternatives con-
sidered in the design process.

4.1 Guiding Example: Photovoltaic Power Plants
As a guiding example throughout this paper, we use a real but
anonymized data set from the energy sector. For approximately one
year, the data comprises the hourly production of 95 photovoltaic
power plants (time series PV01 - PV95), as well as hourly meteo-
rological measurements such as global radiation or temperature from
multiple weather stations. In total, the data consists of 160 time series
and approximately 9000 data records. As meta-information, all time
series carry the type of the sensor they originated from as a property
‘Sensor’, as well as a property ‘Location’.

This data is a typical example of sensor measurements that require
regular DQ assessment prior to tasks such as statistical modeling.
Monitoring tasks often involve shorter time periods, e.g. a few con-
secutive days, or a week from this one-year example. In cooperation
with domain experts, we have identified a set of DQ problems that
should be tested for this data using plausibility checks. We do not
argue for a general validity of this classification.

• Missing: data values being NULL
• Anomaly (data values that are not impossible but improbable

given the data context)
– Zero at daytime: power production being zero at daytime
– Non-zero at night: non-zero power production at night
– Univariate outliers: meteorological data values which are

outliers with respect to their univariate normal distribution
– Non-zero duplicates: repeating identical sensor data values

other than zero (indication for malfunctioning sensor)
• Constraint Violation (semantically impossible data values or

relations between values)
– Boundary: e.g., negative values for power production
– Time holes: time steps of more than one hour
– Time duplicates: duplicate time stamps

In total, 529 plausibility checks were defined by applying this set of
rules to the time series where applicable. Not all DQ issues are equally
important. In this data set, our domain experts distinguish three levels
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Fig. 1. The data model of Visplause. Time series and plausibility checks carry meta-information. Plausibility checks mark incoming time series as
‘check indication’ or ‘no indication’ based on the automated evaluation of check rules.

involve a daily monitoring and DQ assessment of newly acquired data
(e.g., prices, consumption, weather, etc.). Data-driven modeling activ-
ities such as building or validating forecast models based on longer
time series are typically performed in less frequent intervals (e.g.,
monthly). The routine DQ assessment of newly acquired data based on
plausibility checks is an important, frequent, and time-critical activity.

Throughout four years of collaboration, insights gained from joint
data analysis sessions, semi-structured interviews, and contextual in-
quiries [15] with 11 domain experts from multiple business units en-
abled us to identify recurring tasks of DQ assessment. While DQ as-
sessment is a multi-faceted topic and previous work has addressed cer-
tain subtasks (e.g., [11, 17]), we stress that our focus are tasks concern-
ing the regular inspection and validation of identified DQ problems
using existing plausibility checks. The detection of previously uniden-
tified problems, as well as the correction of problems by modifying or
imputing data, are out of scope.
T1 - Routine DQ assessment for a specific use
This task is usually done as preparation for downstream processing
(see T2 and T3) or for reporting. In some cases, the DQ may be insuf-
ficient for certain uses and sufficient for others. This task entails the
following sub-tasks, with concrete examples in italics:
• Summarization - Assess the overall DQ in terms of the proportion

of time series and data records afflicted by DQ problems. “Can the
data be used as it is, or are there DQ issues to investigate further
before proceeding with downstream tasks?”

• Drill-down - Investigative drill-down on DQ problems by time series
or checks to (1) localize problems and to (2) compare problem oc-
currence across different sources. “Which time series are afflicted by
the issues indicated by the summary? Is time series X more afflicted
than time series Y?”

• Temporal characterization - Assessment of the temporal distribu-
tion of check indications concerning linear aspects (e.g., gradually
increasing problem frequencies) and cyclic aspects (e.g., peaks at
certain times of day). “Is this an isolated anomaly, or does it occur
in a regular pattern?”

T2 - Hypothesis generation about DQ problem causes
Causes of problems may refer to the data-generating process (i.e., the
data source), the data transformation and management, or to the plau-
sibility checks themselves in case of false positives. The task may
entail further investigation of the hypotheses and the communication
to responsive stakeholders (e.g., data providers, IT departments).
• Inspection of details - Inspect specific time series and single values

for investigating and validating DQ problems. “This pattern looks
like a gradually failing sensor.”, or “These are all false positives.
Maybe we need to recalibrate the check?”

• Correlation analysis - Identify potential relationships between indi-
cation patterns and possible explanatory time series. “Are there any
weather conditions in which this problem occurs particularly often?”

T3 - DQ-aware selection and export of data
This task involves an efficient selection and export of subsets of data

records and time series that satisfy certain DQ constraints for down-
stream processing or upstream reporting, without introducing a selec-
tion bias. “For training a forecast model, time series with too many
outliers can not be used. Is my selection of clean data records still
representative for all weather conditions/months of the year?”

2.2 Design Goals
The following set of goals guided the design process of our proposed
system. Most aspects of these goals were established based on the task
analysis, while some aspects became clearer throughout the design
process, as described in Section 5.
G1 - Fast and efficient overall DQ assessment
To support the efficient assessment of routinely collected data (T1),
the system should efficiently summarize the overall DQ. This entails
appropriate default configurations and support for sorting and filtering.
G2 - Flexible in-depth analysis of check results
The identified tasks (T1-T3) involve an assessment of the DQ on mul-
tiple aggregation levels: (1) Global summarization (e.g., overall DQ),
(2) Local summarization in terms of meaningful subsets of time se-
ries (e.g., DQ per power plant), types of checks (e.g., DQ per problem
type) and temporal aspects (e.g., DQ per month), and (3) on the level
of individual DQ issues (e.g., outliers). The choice of and the naviga-
tion between aggregation levels should be flexible, fast and intuitive.
The system should also support the selection of data subsets on any of
the available aggregation levels (T3).
G3 - Scalability to large numbers of time series, checks and indi-
vidual observations
In the energy sector, data is often acquired by a large number of sen-
sors (> 100) over long periods of time (up to several years) and/or at
high frequencies (e.g., one measurement per second). Therefore, the
system design should scale for up to hundreds of time series, each with
up to millions of data values and multiple plausibility checks.
G4 - Scalable visual complexity
To accommodate tasks of varying complexity and users of varying ex-
perience, the visual complexity of the system needs to be adjustable.
Regular monitoring and reporting tasks should be easy to accomplish,
while expert users should not be limited regarding view configuration.
G5 - Workflow integration
The system should naturally fit into the DQ management workflow
of analysts in the energy sector. It should therefore support (1) the
import of time series with meta-information via common exchange
formats like CSV or SQL, (2) the re-use of existing plausibility checks,
and (3) the export of currently selected data (T3). In favor of a broad
applicability, the system should allow making use of existing semantic
information about time series or checks, but it should not require the
presence of any particular meta-information property.

2.3 Data Model
Fig. 1 illustrates a very simple example of a typical data model in the
context of energy-related time series. The model distinguishes time

series and plausibility checks on these time series. In related data qual-
ity literature, plausibility checks are often termed ‘quality checks’ or
‘anomaly detection algorithms’ [11, 17]. Each plausibility check (sub-
sequently abbreviated as check) evaluates a rule or anomaly detection
algorithm to test values from one or more time series for the presence
of a particular DQ problem. The result of each check is a binary clas-
sification of data values as ‘indication’ or ‘no indication’.

Time series and checks have meta-information, consisting of prop-
erties such as the sensor type (distinguishing power production from
meteorological quantities), the location, the operator, and many more.
Properties may also be undefined for some time series. For example,
meteorological sensors do not have a power plant operator. Checks
adopt non-ambiguous meta-information of their underlying time se-
ries and have additional properties such as the severity or classifica-
tion of the detected DQ problem. This enables an application-specific
incorporation of various DQ taxonomies (see Sec. 3).

We emphasize that the meta-information properties refer to time se-
ries and checks themselves, not to individual data values. Similar to
work by Turkay et al. [45], meta-information represents an orthogo-
nal aspect which is necessary to structure the potentially very high-
dimensional data table of the actual time series and checks. We also
note that a very similar distinction of energy time series vs. meta-
information has been made in recent work by Brehmer et al. [3], how-
ever, their data model does not include plausibility checks.

3 RELATED WORK

Data quality (DQ) has long been a topic of intensive research in mul-
tiple fields [32]. A widely agreed definition of the term ‘data quality’
from the consumer’s point of view is fitness for use [46].

There are different approaches to characterizing DQ. Multiple re-
searchers identified dimensions of DQ [2, 28] such as availability, con-
sistency, and reliability. Other taxonomies focus on the classification
of particular problems like missing, wrong, and unusable data [22]
and their sources [30]. Gschwandtner et al. [12] summarize several
taxonomies and provide an own taxonomy of dirty time-oriented data.
A classification of DQ issues according to most of these taxonomies
can be represented by our data model using check meta-information
properties (see Sec. 2.3).

The automated detection of DQ problems such as anomalies has
long been a key topic in statistics and data base management [4, 13].
Identifying possible DQ problems, however, often requires an intu-
ition of the data and possible problems. Exploratory visualization is
suitable to provide this intuition [20, 48]. In this sense, well-known
systems like Tableau [40], Spotfire [44], GGobi [39], and many others
are all relevant for DQ assessment. While these systems provide ver-
satile general-purpose aggregation of data dimensions, we found that
the support for structuring high-dimensional data was limited (G3).

Kandel et al. [18] describe DQ assessment as a visualization oppor-
tunity in the broader context of data wrangling. TimeCleanser [11], for
example, supports the process of correcting DQ issues in time-oriented
data, but offers limited flexibility for analyzing the results of plausibil-
ity checks. Most importantly, our focus is on the inspection of check
results, not on the modification of data.

Multiple approaches explicitly convey DQ aspects during visual
analysis. Ward et al. [47] describe strategies for the measurement, dis-
play, and utilization of quality aspects at all stages of the visualization
pipeline. Sulo et al. [38] highlight DQ problems like duplicates and
missing values in a tabular visualization on a data-record level, but do
not support aggregation, which limits the scalability. Other work fo-
cuses on missing data. This issue is repeatedly mentioned as important
for visual analytics systems [18, 49] and there are several studies on
displaying missing data [7, 9, 42, 43]. However, most of this work adds
information to existing visualizations and does not provide overview
and drill-down (G2) regarding data completeness.

Several approaches have been suggested to visualize data anoma-
lies in sensor networks. Shi et al. [35] facilitate sensor failure diag-
nosis by expert users based on topological, correlational, and dimen-
sional views of anomalies. Steiger et al. [37] use dimension reduction
for identifying anomalous patterns. Both focus on identifying anoma-

lous patterns, whereas we assume the existence of suitable plausibility
checks and focus on the analysis of their results (G2). In this paper,
we adopt the suggestion of Turkay et al. [45] to use structural meta-
information about high-dimensional datasets in order to break down
the data dimensions into a manageable number of meaningful subsets.

Several commercial systems provide coarse summaries of DQ in-
dicators also for non-expert users. The Talend Open Studio for Data
Quality [41] visualizes the results of pre-defined or user-defined qual-
ity indicators and highlights DQ problems in corresponding tables.
IBM Watson Analytics [16] assigns an overall DQ score to a data set
and to individual data attributes. However, both Talend and IBM Wat-
son rely on mostly static diagrams for result presentation with limited
possibilities for drill-down or an interactive validation of plausibility
check results.

Many visualization systems support anomaly detection. Janetzko et
al. [17], for example, visualize the results of an anomaly detection of
power consumption data. Their pixel-based approach uses topological
information about the data sources to draw a quadtree. We regard Pro-
filer [19] as the most related system. Profiler uses data mining methods
to automatically flag problematic data for a visual summary, structured
by problem class. Mutual information measures suggest binned views
for a detailed yet scalable analysis of these problems. However, neither
of these systems support a flexible DQ analysis on multiple aggrega-
tion levels using more general meta-information of both data attributes
and checks (G2). Moreover, the schema and anomaly browsers of Pro-
filer only provide a list of data attributes, which limits its applicability
for the DQ assessment of many time series.

4 DESCRIPTION OF VISPLAUSE

This section describes our system Visplause based on a guiding data
example from the energy sector. The intention is to illustrate the ap-
plicability of the system to address the identified tasks, while Sec. 5
provides detailed design justifications with respect to alternatives con-
sidered in the design process.

4.1 Guiding Example: Photovoltaic Power Plants
As a guiding example throughout this paper, we use a real but
anonymized data set from the energy sector. For approximately one
year, the data comprises the hourly production of 95 photovoltaic
power plants (time series PV01 - PV95), as well as hourly meteo-
rological measurements such as global radiation or temperature from
multiple weather stations. In total, the data consists of 160 time series
and approximately 9000 data records. As meta-information, all time
series carry the type of the sensor they originated from as a property
‘Sensor’, as well as a property ‘Location’.

This data is a typical example of sensor measurements that require
regular DQ assessment prior to tasks such as statistical modeling.
Monitoring tasks often involve shorter time periods, e.g. a few con-
secutive days, or a week from this one-year example. In cooperation
with domain experts, we have identified a set of DQ problems that
should be tested for this data using plausibility checks. We do not
argue for a general validity of this classification.

• Missing: data values being NULL
• Anomaly (data values that are not impossible but improbable

given the data context)
– Zero at daytime: power production being zero at daytime
– Non-zero at night: non-zero power production at night
– Univariate outliers: meteorological data values which are

outliers with respect to their univariate normal distribution
– Non-zero duplicates: repeating identical sensor data values

other than zero (indication for malfunctioning sensor)
• Constraint Violation (semantically impossible data values or

relations between values)
– Boundary: e.g., negative values for power production
– Time holes: time steps of more than one hour
– Time duplicates: duplicate time stamps

In total, 529 plausibility checks were defined by applying this set of
rules to the time series where applicable. Not all DQ issues are equally
important. In this data set, our domain experts distinguish three levels
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Fig. 2. Visplause consists of multiple linked parts. The DQ overview provides a hierarchical overview of check results (a). In this example, checks
are aggregated by ‘Sub-class’ and ‘Time Series’ to reveal the most prevalent types of DQ issues and their source. DQ overview columns show
additional information such as (b) the number of checks and time series, (c) the percentage of affected data, (d) the distribution of check indications
over time and (e) the severity of check indications. (f) The current filter shows only checks with at least one check indication. (g) Non-zero at
night anomalies at power plant PV 94 in January 2011 have been selected. (h, i) Linked views provide details of the selected data anomalies for
validation.

of problem severity: ‘uncritical’, ‘warning’ and ‘critical’. All ‘Miss-
ing’ checks are considered ‘critical’. The rules of most ‘Anomaly’
problems are evaluated for different thresholds by one check per sever-
ity level. For example, ‘Non-zero at night’ considers values only
marginally above zero as ‘uncritical’, but larger values as ‘warning’
and eventually ‘critical’.

To incorporate these semantics as meta-information, all checks
have a property ‘Severity’ reflecting the severity level, and proper-
ties ‘Class’, and ‘Sub-class’ reflecting the first and second level of the
classification above. Additionally, checks inherit the properties of the
time series they are referring to (see Fig. 1).

4.2 System Overview
The system Visplause consists of multiple linked parts. The core el-
ement is the Data Quality Overview, an interactive visualization for
the inspection of plausibility check results (Fig. 2a-g). The key idea
is to visualize the checks using a hierarchical tabular layout. Each
table row shows the aggregated check results for a particular seman-
tic group of checks, e.g., checks detecting the same problem class, or
checks based on the same underlying time series. Grouping checks in
a nested way by such meta-information properties defines a scalable
hierarchy on the checks (G3) which is shown using an indented layout
at the left-hand side of the view (Fig. 2a).

Additional columns to the right can be shown or hidden as needed
(G4). These columns visualize information per row such as the num-
ber of aggregated checks or time series (Fig. 2b), the frequency of
indications (Fig. 2c), the temporal distribution of indications (Fig. 2d),
or the severity level of indications (Fig. 2e). Sorting the table by in-
dication frequency guides the user to check groups that are particu-
larly afflicted by indications. To focus the overview on relevant parts,
checks without any indications are filtered from the list per default
(Fig. 2f). Linked views enable the user to inspect check indications in
detail (Fig. 2h,i). They include a time series view, a spreadsheet view,
and a statistical summary view. In particular, these views provide in-
sights about the correctness and completeness of the checks and may
help to find causes of DQ problems.

A typical workflow (G5) starts with the import of data and the eval-
uation of a pre-defined set of plausibility checks for visualization in a

pre-configured set of views (e.g., see Fig. 2). Users may also flexibly
parametrize and layout views at any time as described below.

4.3 Task-oriented Description
This section illustrates how Visplause can be used by domain experts
to address the tasks described in Sec. 2. While the described usage
scenarios are not transcribed from actual analysis sessions, they do
represent realistic workflows according to our domain experts.

4.3.1 T1: Routine DQ assessment for a specific use
Sarah is a data analyst in the energy sector. She has just received
the yearly photovoltaic power plant data from the data providers and
wants to assess the data fitness for clustering the power plants. She im-
ports the data and a predefined set of plausibility checks (see Sec. 4.1).

Initially, Visplause shows an intentionally simple overview of all
check results (Fig. 3a). The DQ Overview supports the fast assessment
of overall data fitness (G1) with the Indication Frequency Column.
This column shows the percentage of data records afflicted by indica-
tions. Stacked bars encode the proportion of records with and without
indications by checks in that row.

Sarah discovers that almost half of all data records have indications
by one or more of the 254 underlying checks (Fig. 3a). Tooltips pro-
vide the exact indication frequency on demand (44.8%). She wants to
investigate which time series are affected. The DQ Overview offers to
dynamically specify a check hierarchy to support this task. By click-
ing on the ‘+’ sign next to the root node ‘All’, Sarah can perform a
drill-down by different check properties, allowing her to flexibly sum-
marize check results (G2). Her drill-down by ‘Time Series’ reveals
that eight photovoltaic power plants (abbr. PVs) have anomalies or
missing values in more than 5% of their data (Fig. 3b). Scale-stack
bars [14] ensure that even small amounts of indications are clearly
visible, as the smallest order of magnitude containing the relative in-
dication frequency value displays the stacked bar in full height.

The color of indication frequency bars reveals that indications of
these eight PVs are either caused by anomalies (purple) or by more
than one check class (brown). In the latter case, small triangles on
top of the bars show the frequencies of involved check classes in the
respective magnitude. To determine which checks have indications
for a particular time series (PV 03), Sarah performs a local drill-down
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Fig. 3. The frequency of check indications at four stages of a drill-down scenario. (a) Aggregation of all checks, (b) drill-down by time series, (c) a
local drill-down on the attribute ‘PV 03’ by check classification, and (d) another local drill-down after swapping the hierarchy levels.

by ‘Sub-class’ (Fig. 3c) by clicking on the ‘+’ sign next to the node
‘PV 03’. Its check indications mainly comprise missing values (≈9%)
and only a few data anomalies (< 1%). Sarah wonders if this distri-
bution of check indications across sub-classes is generally true. She
swaps the hierarchy levels by drag and drop such that drill-downs are
performed first by ‘Sub-class’ and then by ‘Time Series’ (Fig. 3d).
This confirms that missing values are the most frequent check indica-
tion overall, followed by ‘zero at daytime’ and ‘non-zero duplicate’
anomalies, which occur similarly often.

For most subsequent tasks, time series data should not contain long
stretches of anomalous data. Visplause supports the visualization of
the temporal distribution of check indications with the temporal In-
dication Distribution Column. This column visualizes the percent-
age of data records with check indications in semantically meaningful
temporal partitions by the size of centered rectangles (Fig. 2d). Cen-
tering the rectangles aligns them both horizontally and vertically, thus
supporting comparisons between adjacent rows and columns. The par-
titioning is either linear (e.g., one partition per month) or cyclic (e.g.,
one partition per day of week), with a user-defined degree of detail.

Sarah adds a temporal Indication Distribution Column to the DQ
overview (Fig. 2d). In most time series, indications occur throughout
the year, with a noticeable increase in winter 2010 and spring 2011.
However, the check ‘Non-zero at night’ shows a very noticeable peak
of check indications in January 2011 (Fig. 2g).

How critical are these check indications? Sarah adds the Severity
Level Column to find out. Similar to Indication Distribution Columns,
such check property columns use the size of centered rectangles to vi-
sualize the relative frequency of check indications per category, in this
case per ‘Severity’ level. Sarah sees that all ‘Non-zero at night’ indica-
tions of PV 94 are critical. She decides to inspect the data to validate
this finding. To this end, she selects all check indications of PV 94 in
January 2011 with a click (Fig. 2g). As a result, a linked Time Series
view automatically shows the underlying time series PV 94 and high-
lights the selected indications (Fig. 2h), while the spreadsheet view
shows the exact values (Fig. 2i). This reveals that these indications are
caused by a significant offset for a long period of time. Sarah decides
to report this finding to her data providers. Concluding T1, the DQ
seems sufficient overall, but some parts of the data must be excluded
for certain downstream tasks.

4.3.2 T2: Hypothesis generation about DQ problem causes
Previously, Sarah discovered that missing values are the most frequent
check indication overall (Sec. 4.3.1). She is particularly interested in
missing power production values. What caused these DQ issues? Can
other time series provide further insights?

To obtain an overview of missing values for each power production
time series, Sarah defines the hierarchy based on problem class, sen-
sor type, and time series (Fig. 4a). As all checks without indications
are filtered from the DQ Overview per default, the resulting hierarchy
shows that five of the 95 PVs have missing values (Fig. 4a).

Sarah hypothesizes that certain meteorological conditions may
cause sensor malfunction and thus missing sensor data. Visplause pro-
vides the Statistical Summary View to investigate hypotheses about
possible causes of DQ issues (Fig. 4b). This view is an adapted ver-
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Fig. 4. Visplause as used for hypothesis generation regarding miss-
ing data of power plant production (a). Five power plants have missing
values. Ranking meteorological quantities by their relevance for the se-
lected missing values of PV 02 suggests air humidity as possible cause
(b). Adding air humidity as column to the DQ Overview (c) shows a re-
lationship between high air humidity and missing values of power plants.

sion of the 1D rank-by-feature framework [34]. The key concept is to
show histograms and statistics for each of a potentially large number
of time series, which may be ranked by any of these statistics. Specifi-
cally, the view provides the information gain as a statistical measure to
quantify the mutual information between each time series and an ad-
hoc classification of data records given by a user-defined selection of
indications (see Kandel et al. [19] for a similar concept). Ranking by
this relevance measure guides the user towards possible explanatory
time series, as the measure is high for time series where selected data
records are distributed very differently from non-selected data records.

Sarah selects the missing values of PV 02 in the DQ Overview by
clicking the respective table row. This causes the Statistical Sum-
mary View to compute the relevance of time series for this selection.
Sarah discovers that relative air humidity of weather station 1 ranks
first (Fig. 4b). She decides to investigate the relationship between this
humidity time series and missing PV values in general.

For visualizing relationships between check indications and val-
ues of time series, the DQ Overview offers quantitative and cate-
gorical Indication Distribution Columns. Quantitative distribution
columns partition the value range of time series (e.g., humidity values)
in equally sized steps with intuitive boundaries (e.g., from 0 to 100 in
steps of 5). Categorical time series create one partition per category
or per user-defined subset of categories (e.g., working days vs. week-
ends). Similar to other distribution columns, the relative frequency of
check indications in each partition is visualized by scaling a centered
rectangle. A histogram in the column header shows the number of data
records per partition. ‘M’ denotes a partition for missing values.

Sarah adds a quantitative Distribution Column for air humidity of
weather station 1 to the DQ overview (Fig. 4c). The relation between
high humidity values and missing values of power plants, particularly
PVs 2, 3, and 6, is immediately apparent. She concludes that these
check indications might be caused by hardware failures at high air hu-
midity and reports this finding to the respective power plant operators.
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Fig. 2. Visplause consists of multiple linked parts. The DQ overview provides a hierarchical overview of check results (a). In this example, checks
are aggregated by ‘Sub-class’ and ‘Time Series’ to reveal the most prevalent types of DQ issues and their source. DQ overview columns show
additional information such as (b) the number of checks and time series, (c) the percentage of affected data, (d) the distribution of check indications
over time and (e) the severity of check indications. (f) The current filter shows only checks with at least one check indication. (g) Non-zero at
night anomalies at power plant PV 94 in January 2011 have been selected. (h, i) Linked views provide details of the selected data anomalies for
validation.

of problem severity: ‘uncritical’, ‘warning’ and ‘critical’. All ‘Miss-
ing’ checks are considered ‘critical’. The rules of most ‘Anomaly’
problems are evaluated for different thresholds by one check per sever-
ity level. For example, ‘Non-zero at night’ considers values only
marginally above zero as ‘uncritical’, but larger values as ‘warning’
and eventually ‘critical’.

To incorporate these semantics as meta-information, all checks
have a property ‘Severity’ reflecting the severity level, and proper-
ties ‘Class’, and ‘Sub-class’ reflecting the first and second level of the
classification above. Additionally, checks inherit the properties of the
time series they are referring to (see Fig. 1).

4.2 System Overview
The system Visplause consists of multiple linked parts. The core el-
ement is the Data Quality Overview, an interactive visualization for
the inspection of plausibility check results (Fig. 2a-g). The key idea
is to visualize the checks using a hierarchical tabular layout. Each
table row shows the aggregated check results for a particular seman-
tic group of checks, e.g., checks detecting the same problem class, or
checks based on the same underlying time series. Grouping checks in
a nested way by such meta-information properties defines a scalable
hierarchy on the checks (G3) which is shown using an indented layout
at the left-hand side of the view (Fig. 2a).

Additional columns to the right can be shown or hidden as needed
(G4). These columns visualize information per row such as the num-
ber of aggregated checks or time series (Fig. 2b), the frequency of
indications (Fig. 2c), the temporal distribution of indications (Fig. 2d),
or the severity level of indications (Fig. 2e). Sorting the table by in-
dication frequency guides the user to check groups that are particu-
larly afflicted by indications. To focus the overview on relevant parts,
checks without any indications are filtered from the list per default
(Fig. 2f). Linked views enable the user to inspect check indications in
detail (Fig. 2h,i). They include a time series view, a spreadsheet view,
and a statistical summary view. In particular, these views provide in-
sights about the correctness and completeness of the checks and may
help to find causes of DQ problems.

A typical workflow (G5) starts with the import of data and the eval-
uation of a pre-defined set of plausibility checks for visualization in a

pre-configured set of views (e.g., see Fig. 2). Users may also flexibly
parametrize and layout views at any time as described below.

4.3 Task-oriented Description
This section illustrates how Visplause can be used by domain experts
to address the tasks described in Sec. 2. While the described usage
scenarios are not transcribed from actual analysis sessions, they do
represent realistic workflows according to our domain experts.

4.3.1 T1: Routine DQ assessment for a specific use
Sarah is a data analyst in the energy sector. She has just received
the yearly photovoltaic power plant data from the data providers and
wants to assess the data fitness for clustering the power plants. She im-
ports the data and a predefined set of plausibility checks (see Sec. 4.1).

Initially, Visplause shows an intentionally simple overview of all
check results (Fig. 3a). The DQ Overview supports the fast assessment
of overall data fitness (G1) with the Indication Frequency Column.
This column shows the percentage of data records afflicted by indica-
tions. Stacked bars encode the proportion of records with and without
indications by checks in that row.

Sarah discovers that almost half of all data records have indications
by one or more of the 254 underlying checks (Fig. 3a). Tooltips pro-
vide the exact indication frequency on demand (44.8%). She wants to
investigate which time series are affected. The DQ Overview offers to
dynamically specify a check hierarchy to support this task. By click-
ing on the ‘+’ sign next to the root node ‘All’, Sarah can perform a
drill-down by different check properties, allowing her to flexibly sum-
marize check results (G2). Her drill-down by ‘Time Series’ reveals
that eight photovoltaic power plants (abbr. PVs) have anomalies or
missing values in more than 5% of their data (Fig. 3b). Scale-stack
bars [14] ensure that even small amounts of indications are clearly
visible, as the smallest order of magnitude containing the relative in-
dication frequency value displays the stacked bar in full height.

The color of indication frequency bars reveals that indications of
these eight PVs are either caused by anomalies (purple) or by more
than one check class (brown). In the latter case, small triangles on
top of the bars show the frequencies of involved check classes in the
respective magnitude. To determine which checks have indications
for a particular time series (PV 03), Sarah performs a local drill-down
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Fig. 3. The frequency of check indications at four stages of a drill-down scenario. (a) Aggregation of all checks, (b) drill-down by time series, (c) a
local drill-down on the attribute ‘PV 03’ by check classification, and (d) another local drill-down after swapping the hierarchy levels.

by ‘Sub-class’ (Fig. 3c) by clicking on the ‘+’ sign next to the node
‘PV 03’. Its check indications mainly comprise missing values (≈9%)
and only a few data anomalies (< 1%). Sarah wonders if this distri-
bution of check indications across sub-classes is generally true. She
swaps the hierarchy levels by drag and drop such that drill-downs are
performed first by ‘Sub-class’ and then by ‘Time Series’ (Fig. 3d).
This confirms that missing values are the most frequent check indica-
tion overall, followed by ‘zero at daytime’ and ‘non-zero duplicate’
anomalies, which occur similarly often.

For most subsequent tasks, time series data should not contain long
stretches of anomalous data. Visplause supports the visualization of
the temporal distribution of check indications with the temporal In-
dication Distribution Column. This column visualizes the percent-
age of data records with check indications in semantically meaningful
temporal partitions by the size of centered rectangles (Fig. 2d). Cen-
tering the rectangles aligns them both horizontally and vertically, thus
supporting comparisons between adjacent rows and columns. The par-
titioning is either linear (e.g., one partition per month) or cyclic (e.g.,
one partition per day of week), with a user-defined degree of detail.

Sarah adds a temporal Indication Distribution Column to the DQ
overview (Fig. 2d). In most time series, indications occur throughout
the year, with a noticeable increase in winter 2010 and spring 2011.
However, the check ‘Non-zero at night’ shows a very noticeable peak
of check indications in January 2011 (Fig. 2g).

How critical are these check indications? Sarah adds the Severity
Level Column to find out. Similar to Indication Distribution Columns,
such check property columns use the size of centered rectangles to vi-
sualize the relative frequency of check indications per category, in this
case per ‘Severity’ level. Sarah sees that all ‘Non-zero at night’ indica-
tions of PV 94 are critical. She decides to inspect the data to validate
this finding. To this end, she selects all check indications of PV 94 in
January 2011 with a click (Fig. 2g). As a result, a linked Time Series
view automatically shows the underlying time series PV 94 and high-
lights the selected indications (Fig. 2h), while the spreadsheet view
shows the exact values (Fig. 2i). This reveals that these indications are
caused by a significant offset for a long period of time. Sarah decides
to report this finding to her data providers. Concluding T1, the DQ
seems sufficient overall, but some parts of the data must be excluded
for certain downstream tasks.

4.3.2 T2: Hypothesis generation about DQ problem causes
Previously, Sarah discovered that missing values are the most frequent
check indication overall (Sec. 4.3.1). She is particularly interested in
missing power production values. What caused these DQ issues? Can
other time series provide further insights?

To obtain an overview of missing values for each power production
time series, Sarah defines the hierarchy based on problem class, sen-
sor type, and time series (Fig. 4a). As all checks without indications
are filtered from the DQ Overview per default, the resulting hierarchy
shows that five of the 95 PVs have missing values (Fig. 4a).

Sarah hypothesizes that certain meteorological conditions may
cause sensor malfunction and thus missing sensor data. Visplause pro-
vides the Statistical Summary View to investigate hypotheses about
possible causes of DQ issues (Fig. 4b). This view is an adapted ver-
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Fig. 4. Visplause as used for hypothesis generation regarding miss-
ing data of power plant production (a). Five power plants have missing
values. Ranking meteorological quantities by their relevance for the se-
lected missing values of PV 02 suggests air humidity as possible cause
(b). Adding air humidity as column to the DQ Overview (c) shows a re-
lationship between high air humidity and missing values of power plants.

sion of the 1D rank-by-feature framework [34]. The key concept is to
show histograms and statistics for each of a potentially large number
of time series, which may be ranked by any of these statistics. Specifi-
cally, the view provides the information gain as a statistical measure to
quantify the mutual information between each time series and an ad-
hoc classification of data records given by a user-defined selection of
indications (see Kandel et al. [19] for a similar concept). Ranking by
this relevance measure guides the user towards possible explanatory
time series, as the measure is high for time series where selected data
records are distributed very differently from non-selected data records.

Sarah selects the missing values of PV 02 in the DQ Overview by
clicking the respective table row. This causes the Statistical Sum-
mary View to compute the relevance of time series for this selection.
Sarah discovers that relative air humidity of weather station 1 ranks
first (Fig. 4b). She decides to investigate the relationship between this
humidity time series and missing PV values in general.

For visualizing relationships between check indications and val-
ues of time series, the DQ Overview offers quantitative and cate-
gorical Indication Distribution Columns. Quantitative distribution
columns partition the value range of time series (e.g., humidity values)
in equally sized steps with intuitive boundaries (e.g., from 0 to 100 in
steps of 5). Categorical time series create one partition per category
or per user-defined subset of categories (e.g., working days vs. week-
ends). Similar to other distribution columns, the relative frequency of
check indications in each partition is visualized by scaling a centered
rectangle. A histogram in the column header shows the number of data
records per partition. ‘M’ denotes a partition for missing values.

Sarah adds a quantitative Distribution Column for air humidity of
weather station 1 to the DQ overview (Fig. 4c). The relation between
high humidity values and missing values of power plants, particularly
PVs 2, 3, and 6, is immediately apparent. She concludes that these
check indications might be caused by hardware failures at high air hu-
midity and reports this finding to the respective power plant operators.
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Task 3: Selecting plausible data
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Fig. 5. Using the DQ Overview to select clean data for further pro-
cessing. Initially, the view reveals eight power plants with > 5% check
indications and a severity level of warning or critical (a). After excluding
these power plants via filtering, the clean data of the remaining power
plants can be selected with a single click (b).

4.3.3 T3: DQ-aware selection and export of data

Sarah wants to cluster photovoltaic power plants in an external tool by
their similarity during normal operation (i.e., only plausible values).
She thus needs to exclude data records with indications, as well as
irrelevant time series (e.g., meteorological measurements).

As a first step, Sarah wants to focus the DQ Overview on time series
referring to photovoltaic power plants. She thus defines the hierarchy
based on the sensor type (e.g., ‘PV’, ‘Temperature’, etc.) and the un-
derlying time series (Fig. 5a).

Next, Sarah wants to exclude power plants with too many DQ prob-
lems entirely. After sorting by indication frequency, the DQ Overview
shows that eight power plants have indications in more than 5% of their
data. The Severity Level Column reveals that these indications are all
classified as either ‘warning’ or ‘critical’. Sarah decides to exclude
these power plants for subsequent processing steps. Removing them
from the DQ Overview is supported by interactive filtering of checks.
To do so, Sarah first selects their rows, which highlights them in blue.
She then clicks the “-” sign of the filter on top of the DQ overview and
selects to remove all checks referring to any of the selected time series
from the view. As a result, the DQ Overview now only shows PV-time
series with less than 5% check indications (Fig. 5b).

In order to select the clean data records of all remaining PVs for
clustering, Sarah clicks on the green bar in the Indication Frequency
Column of the aggregated row ‘PV’ (Fig. 5b). The resulting clean
data matrix can be inspected in the Spreadsheet View and exported,
e.g., via the clipboard to other tools (G5). In use-cases where avoid-
ing a selection bias is crucial, Sarah could have considered Indication
Distribution Columns or linked views before exporting the data. As
described in Sec. 4.3.2, the information gain ranking of the Statistical
Summary View would guide her towards time series where her selec-
tion of clean data does not cover the entire value range.

5 REFLECTIONS ON DESIGN EVOLUTION

This section describes and reflects upon the design process of Vis-
plause. The goal is to enable a longitudinal comparison of the evolv-
ing design along four milestone stages, and to justify design decisions
with respect to alternatives that were considered but ultimately dis-
carded in the course of the project. As a result of reflection, we state
lessons learned from own mistakes while designing Visplause.

5.1 Stages of the Design Process
The design process of Visplause started in late 2013, and can be char-
acterized as a sequence of four milestone stages:
Initial Design: After an initial task analysis (Sec. 2.1), we used par-
allel prototyping [6] of hand-drawn sketches to discuss early design
decisions with domain experts of our two partner companies. As one
example, Fig. 6 shows an initial (and incomplete) sketch of the DQ
Overview – the key element of Visplause. During a session of ∼
3 hours, 11 domain experts from the two companies were prompted
to give positive, negative, and prospective feedback based on our
sketches using the rose-bud-thorn method [24].
Early Prototype: The first prototype of Visplause was implemented
based on feedback on the sketches. Its application to real data refined
our understanding of tasks and requirements, and exposed deficiencies
of previous visual encoding choices. The prototype depicted in Fig. 7a
already accounts for some of these insights. In addition to collecting
feedback from 6 experts of our partner companies, we showcased the
prototype among other projects at ‘E-World 2015’, Europe’s premier
energy fair (≈ 24,000 visitors). Around 50 experts from 12 companies
including managers and technical directors gave informal feedback af-
ter private, grouped demonstrations of 20-30 minutes.
Intermediate Design: Based on insights from the previous stage, we
refined the prototype over a period of several weeks. Fig. 7b shows
a design iteration that is already very close to the final design (with
the exception of the Indication Frequency Column). The evaluation
of the design was again based on qualitative feedback collected after
interactive sessions with 6 experts from our partner companies.
Final Design: Fig. 2 shows the final design of the DQ Overview, as
described in Section 4. It was evaluated based on qualitative feedback
collected after a deployment of Visplause from five domain experts
from our two partner companies (see Sec.7).

5.2 Design Decisions and Lessons Learned
This section provides detailed justifications for ten major design de-
cisions made in the course of the project. We also identify lessons
learned (LL) from own mistakes and insights while designing Vis-
plause. While we believe that some aspects might be valid in general,
we emphasize that this discussion is solely based on a subjective re-
flection of the design process of Visplause with our domain experts.
Tabular layout of the DQ Overview: The key idea of providing an
overview of check results using a table-based layout was already en-
visioned in the first hand-drawn sketches of Visplause (Fig. 6). We
chose table-oriented displays because (1) our users were already famil-
iar with them; (2) control matrices for DQ assessment are suggested by
the literature [27], and (3) they enable independent visual encodings
of multiple structurally different aspects of checks as columns [23].

The sketch also illustrates a table that can be split into multiple
parts, where corresponding rows are connected with a line. Similar to
work by Gratzl et al. [10], the idea was to support sorting table parts
independently. This feature, however, was not implemented due to
feedback that considered it overly complex in the application context.
Semantically meaningful hierarchy of checks: Inspired by the well-
known concept of data pivotization [40], the initial design already in-
cludes a user-definable hierarchy of checks. A hierarchical definition
of rows ensures the scalability regarding the number of checks (G3).
It is also essential for a flexible summarization of check results (G2)
and a scalable visual complexity (G4).

An early approach to defining the hierarchy was the column ‘Hi-
erarchical Clustering’ (Fig. 6). Based on the idea of grouping indica-
tion patterns hierarchically by their similarity, we wanted to provide
a structural overview without having to define a hierarchy in advance.
However, this concept was not realized, as domain experts clearly pre-
ferred comparing semantically meaningful groups as rows.

Based on this feedback, we decided to enable a hierarchy definition
by any categorical check properties, such as sensor types, problem
classes, etc. (see Fig. 7a,b). This allows exploiting any known struc-
ture of dimensions as suggested by Turkay et al. [45], and enables
our domain experts to reason about DQ on familiar aggregation lev-

Fig. 6. A hand-drawn sketch of the DQ Overview showing parts of the initial design. Many sketched ideas persist to the final design, including the
table-based layout, the hierarchical grouping of plausibility checks, or the concept of encoding different aspects of check results as columns.
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Fig. 7. The DQ Overview at different design stages. Aspects that
evolved significantly over time include the encoding of the hierarchy
(left), the use of color, the encoding of indication frequency (middle),
and the encoding of indication distribution (right).

els, which they considered crucial to efficient DQ monitoring (LL01 -
‘Preference for meaningful, familiar aggregation levels’).
Encoding the hierarchy as indented layout: The hierarchy was ini-
tially designed as an icicle plot [25] (see Fig. 7a). Based on tests with
real data, however, domain experts criticized the absence of sub-total
rows. Expanded nodes could not be compared to non-expanded sib-
lings, and child nodes could not be compared to their parents (see
‘Dew Point 01’ in Fig. 7a, which has no own representation).

We thus decided against icicle plots in favor of an indented layout
with sub-totals, similar to a file browser (see Fig. 7b). Our domain
experts preferred the indented layout for several reasons (LL02: ‘Ex-
pand rather than replace at drill-down): (1) when expanding nodes,
the parent was preserved as context, (2) less horizontal space was re-
quired for the hierarchy-part, and (3) the layout was more similar to
well-known tree-widgets, e.g., file browsers. This could apply to hier-
archical linear layouts in general (compare to Lex et al. [23]).

Following design guidelines for aggregation [8], we increased the
discriminability of child nodes from aggregated parents by encoding
the hierarchy level using shades of gray. To prevent users from un-
intentionally comparing rows of different hierarchy levels, we intro-
duced black lines between them. Additionally, hovering a row desatu-
rates all but that row and its child rows (see Fig. 3d). We found these
visual cues necessary to preserve the visual correspondence between
descriptions on the left side and columns to the far right.
Encoding indication frequency using scale-stack bars: Summa-
rizing indication frequency as single value per row supports an effi-
cient overview of overall DQ (G1). The initial sketch uses a simple
linear encoding (‘Number Anomalous Entries’ in Fig. 6). However,
tests with real data made us realize that indication frequencies exhibit
largely varying scales. Using linear scaling, small percentages were
not perceptible, while logarithmic scaling was considered harder to
interpret. As a solution, we adopted the concept of scale-stack bar
charts [14] and explicitly represented each order of magnitude as sub-
column in decimal steps, i.e., ≤ 100%,≤ 10%,≤ 1%, etc. To enable
an efficient selection of clean data, we explicitly visualized records
without indications as a stacked green bar (see Fig. 7a).

The increased complexity of scale-stack bar charts raised usability
concerns from some of our domain experts. We thus experimented
with a number of variations. Fig. 7b shows one of our later attempts;
all bars were drawn in full height, corresponding to bar charts with
scale breaks [14]. The domain experts considered the resulting graph
more visually pleasing. While it may also seem easier to interpret, it
can be misleading, as adjacent bars can be perceived as a single long
bar. In the last row of Fig. 7b (‘Air Pressure’), the green bar is almost
twice the size of the bar above (‘Dew Point 02’), but the actual differ-
ence of clean records is less than 5%. After realizing this, experts who
did indeed misinterpret the graph now indicated a preference for the
scale-stack bars. We thus returned to the previous encoding, and vi-
sually reduced orders of magnitude below the smallest one containing
the indication frequency value to a thin line (Fig. 2). Indication bars
in larger magnitudes are also drawn in full height, which facilitates
the comparison of indication frequencies within the same magnitude.
Comparisons of magnitude can be performed effectively, as our design
creates a staircase-like appearance with bars drawn in full height.
Consistent color encoding of check properties (e.g., ‘Class’): In
the initial design, color was used to encode relative indication fre-
quencies in shades of red (see Fig. 6). We had not anticipated that
certain meta-information should be displayed at all times, regardless
of the hierarchical drill-down. From tests with real data, we discov-
ered check severity as one such property, as any number of indications
could be tolerable for one check, but critical for another. In the pro-
totype, we thus introduced an additional scheme: following a familiar
‘traffic light’ metaphor brought up by a domain expert, we encoded
the severity of indications using red, orange, yellow, and green for
‘critical’, ‘warning’, ‘uncritical’, and ‘no indication’ (see Fig. 7a).

As expected, hue allowed for an effective distinction of categor-
ical meta-information [26]. However, feedback from companies at
E-world indicated a need to encode different properties, and to cus-
tomize color schemes according to internal conventions. We therefore
decided to let users define the meta-information property used for col-
oring. Experimenting with different properties, our domain experts
claimed that the problem class was typically at least as important as
severity, which we adopted for the coloring in our guiding example. In
general, hue is a suitable visual attribute for encoding qualitative in-
formation of at most 12 categories [48], which is typically the case for
properties like ‘Class’. At this point, we also decided to use the color
encoding of the user-defined check property consistently for all parts
of Visplause. Consequently, the distribution of severity levels or other
properties was henceforth displayed in dedicated optional columns.

In hindsight, we had dedicated the color channel very early to in-
dication frequency, a variable that could have been encoded more ef-
fectively using other means (e.g., area [26]). We also learned that in-
flexible use of color can be problematic in real-world projects, as cus-
tomers may have internal policies or associations from other tools that
prohibit certain uses. In this respect, encoding a customizable check
property was a more sustainable choice (LL03 - ‘Consider workflow
integration in color encodings’).
Using a dedicated color for property overlap: With the consistent
color-encoding of categorical check properties such as ‘Class’, we first
attempted to convey the proportion of each category for all columns of
the DQ overview. For example, the Indication Frequency Column sub-
divided the stacked bar by class. However, the perception of small bars
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Task 3: Selecting plausible data

a

b
Fig. 5. Using the DQ Overview to select clean data for further pro-
cessing. Initially, the view reveals eight power plants with > 5% check
indications and a severity level of warning or critical (a). After excluding
these power plants via filtering, the clean data of the remaining power
plants can be selected with a single click (b).

4.3.3 T3: DQ-aware selection and export of data

Sarah wants to cluster photovoltaic power plants in an external tool by
their similarity during normal operation (i.e., only plausible values).
She thus needs to exclude data records with indications, as well as
irrelevant time series (e.g., meteorological measurements).

As a first step, Sarah wants to focus the DQ Overview on time series
referring to photovoltaic power plants. She thus defines the hierarchy
based on the sensor type (e.g., ‘PV’, ‘Temperature’, etc.) and the un-
derlying time series (Fig. 5a).

Next, Sarah wants to exclude power plants with too many DQ prob-
lems entirely. After sorting by indication frequency, the DQ Overview
shows that eight power plants have indications in more than 5% of their
data. The Severity Level Column reveals that these indications are all
classified as either ‘warning’ or ‘critical’. Sarah decides to exclude
these power plants for subsequent processing steps. Removing them
from the DQ Overview is supported by interactive filtering of checks.
To do so, Sarah first selects their rows, which highlights them in blue.
She then clicks the “-” sign of the filter on top of the DQ overview and
selects to remove all checks referring to any of the selected time series
from the view. As a result, the DQ Overview now only shows PV-time
series with less than 5% check indications (Fig. 5b).

In order to select the clean data records of all remaining PVs for
clustering, Sarah clicks on the green bar in the Indication Frequency
Column of the aggregated row ‘PV’ (Fig. 5b). The resulting clean
data matrix can be inspected in the Spreadsheet View and exported,
e.g., via the clipboard to other tools (G5). In use-cases where avoid-
ing a selection bias is crucial, Sarah could have considered Indication
Distribution Columns or linked views before exporting the data. As
described in Sec. 4.3.2, the information gain ranking of the Statistical
Summary View would guide her towards time series where her selec-
tion of clean data does not cover the entire value range.

5 REFLECTIONS ON DESIGN EVOLUTION

This section describes and reflects upon the design process of Vis-
plause. The goal is to enable a longitudinal comparison of the evolv-
ing design along four milestone stages, and to justify design decisions
with respect to alternatives that were considered but ultimately dis-
carded in the course of the project. As a result of reflection, we state
lessons learned from own mistakes while designing Visplause.

5.1 Stages of the Design Process
The design process of Visplause started in late 2013, and can be char-
acterized as a sequence of four milestone stages:
Initial Design: After an initial task analysis (Sec. 2.1), we used par-
allel prototyping [6] of hand-drawn sketches to discuss early design
decisions with domain experts of our two partner companies. As one
example, Fig. 6 shows an initial (and incomplete) sketch of the DQ
Overview – the key element of Visplause. During a session of ∼
3 hours, 11 domain experts from the two companies were prompted
to give positive, negative, and prospective feedback based on our
sketches using the rose-bud-thorn method [24].
Early Prototype: The first prototype of Visplause was implemented
based on feedback on the sketches. Its application to real data refined
our understanding of tasks and requirements, and exposed deficiencies
of previous visual encoding choices. The prototype depicted in Fig. 7a
already accounts for some of these insights. In addition to collecting
feedback from 6 experts of our partner companies, we showcased the
prototype among other projects at ‘E-World 2015’, Europe’s premier
energy fair (≈ 24,000 visitors). Around 50 experts from 12 companies
including managers and technical directors gave informal feedback af-
ter private, grouped demonstrations of 20-30 minutes.
Intermediate Design: Based on insights from the previous stage, we
refined the prototype over a period of several weeks. Fig. 7b shows
a design iteration that is already very close to the final design (with
the exception of the Indication Frequency Column). The evaluation
of the design was again based on qualitative feedback collected after
interactive sessions with 6 experts from our partner companies.
Final Design: Fig. 2 shows the final design of the DQ Overview, as
described in Section 4. It was evaluated based on qualitative feedback
collected after a deployment of Visplause from five domain experts
from our two partner companies (see Sec.7).

5.2 Design Decisions and Lessons Learned
This section provides detailed justifications for ten major design de-
cisions made in the course of the project. We also identify lessons
learned (LL) from own mistakes and insights while designing Vis-
plause. While we believe that some aspects might be valid in general,
we emphasize that this discussion is solely based on a subjective re-
flection of the design process of Visplause with our domain experts.
Tabular layout of the DQ Overview: The key idea of providing an
overview of check results using a table-based layout was already en-
visioned in the first hand-drawn sketches of Visplause (Fig. 6). We
chose table-oriented displays because (1) our users were already famil-
iar with them; (2) control matrices for DQ assessment are suggested by
the literature [27], and (3) they enable independent visual encodings
of multiple structurally different aspects of checks as columns [23].

The sketch also illustrates a table that can be split into multiple
parts, where corresponding rows are connected with a line. Similar to
work by Gratzl et al. [10], the idea was to support sorting table parts
independently. This feature, however, was not implemented due to
feedback that considered it overly complex in the application context.
Semantically meaningful hierarchy of checks: Inspired by the well-
known concept of data pivotization [40], the initial design already in-
cludes a user-definable hierarchy of checks. A hierarchical definition
of rows ensures the scalability regarding the number of checks (G3).
It is also essential for a flexible summarization of check results (G2)
and a scalable visual complexity (G4).

An early approach to defining the hierarchy was the column ‘Hi-
erarchical Clustering’ (Fig. 6). Based on the idea of grouping indica-
tion patterns hierarchically by their similarity, we wanted to provide
a structural overview without having to define a hierarchy in advance.
However, this concept was not realized, as domain experts clearly pre-
ferred comparing semantically meaningful groups as rows.

Based on this feedback, we decided to enable a hierarchy definition
by any categorical check properties, such as sensor types, problem
classes, etc. (see Fig. 7a,b). This allows exploiting any known struc-
ture of dimensions as suggested by Turkay et al. [45], and enables
our domain experts to reason about DQ on familiar aggregation lev-

Fig. 6. A hand-drawn sketch of the DQ Overview showing parts of the initial design. Many sketched ideas persist to the final design, including the
table-based layout, the hierarchical grouping of plausibility checks, or the concept of encoding different aspects of check results as columns.
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Fig. 7. The DQ Overview at different design stages. Aspects that
evolved significantly over time include the encoding of the hierarchy
(left), the use of color, the encoding of indication frequency (middle),
and the encoding of indication distribution (right).

els, which they considered crucial to efficient DQ monitoring (LL01 -
‘Preference for meaningful, familiar aggregation levels’).
Encoding the hierarchy as indented layout: The hierarchy was ini-
tially designed as an icicle plot [25] (see Fig. 7a). Based on tests with
real data, however, domain experts criticized the absence of sub-total
rows. Expanded nodes could not be compared to non-expanded sib-
lings, and child nodes could not be compared to their parents (see
‘Dew Point 01’ in Fig. 7a, which has no own representation).

We thus decided against icicle plots in favor of an indented layout
with sub-totals, similar to a file browser (see Fig. 7b). Our domain
experts preferred the indented layout for several reasons (LL02: ‘Ex-
pand rather than replace at drill-down): (1) when expanding nodes,
the parent was preserved as context, (2) less horizontal space was re-
quired for the hierarchy-part, and (3) the layout was more similar to
well-known tree-widgets, e.g., file browsers. This could apply to hier-
archical linear layouts in general (compare to Lex et al. [23]).

Following design guidelines for aggregation [8], we increased the
discriminability of child nodes from aggregated parents by encoding
the hierarchy level using shades of gray. To prevent users from un-
intentionally comparing rows of different hierarchy levels, we intro-
duced black lines between them. Additionally, hovering a row desatu-
rates all but that row and its child rows (see Fig. 3d). We found these
visual cues necessary to preserve the visual correspondence between
descriptions on the left side and columns to the far right.
Encoding indication frequency using scale-stack bars: Summa-
rizing indication frequency as single value per row supports an effi-
cient overview of overall DQ (G1). The initial sketch uses a simple
linear encoding (‘Number Anomalous Entries’ in Fig. 6). However,
tests with real data made us realize that indication frequencies exhibit
largely varying scales. Using linear scaling, small percentages were
not perceptible, while logarithmic scaling was considered harder to
interpret. As a solution, we adopted the concept of scale-stack bar
charts [14] and explicitly represented each order of magnitude as sub-
column in decimal steps, i.e., ≤ 100%,≤ 10%,≤ 1%, etc. To enable
an efficient selection of clean data, we explicitly visualized records
without indications as a stacked green bar (see Fig. 7a).

The increased complexity of scale-stack bar charts raised usability
concerns from some of our domain experts. We thus experimented
with a number of variations. Fig. 7b shows one of our later attempts;
all bars were drawn in full height, corresponding to bar charts with
scale breaks [14]. The domain experts considered the resulting graph
more visually pleasing. While it may also seem easier to interpret, it
can be misleading, as adjacent bars can be perceived as a single long
bar. In the last row of Fig. 7b (‘Air Pressure’), the green bar is almost
twice the size of the bar above (‘Dew Point 02’), but the actual differ-
ence of clean records is less than 5%. After realizing this, experts who
did indeed misinterpret the graph now indicated a preference for the
scale-stack bars. We thus returned to the previous encoding, and vi-
sually reduced orders of magnitude below the smallest one containing
the indication frequency value to a thin line (Fig. 2). Indication bars
in larger magnitudes are also drawn in full height, which facilitates
the comparison of indication frequencies within the same magnitude.
Comparisons of magnitude can be performed effectively, as our design
creates a staircase-like appearance with bars drawn in full height.
Consistent color encoding of check properties (e.g., ‘Class’): In
the initial design, color was used to encode relative indication fre-
quencies in shades of red (see Fig. 6). We had not anticipated that
certain meta-information should be displayed at all times, regardless
of the hierarchical drill-down. From tests with real data, we discov-
ered check severity as one such property, as any number of indications
could be tolerable for one check, but critical for another. In the pro-
totype, we thus introduced an additional scheme: following a familiar
‘traffic light’ metaphor brought up by a domain expert, we encoded
the severity of indications using red, orange, yellow, and green for
‘critical’, ‘warning’, ‘uncritical’, and ‘no indication’ (see Fig. 7a).

As expected, hue allowed for an effective distinction of categor-
ical meta-information [26]. However, feedback from companies at
E-world indicated a need to encode different properties, and to cus-
tomize color schemes according to internal conventions. We therefore
decided to let users define the meta-information property used for col-
oring. Experimenting with different properties, our domain experts
claimed that the problem class was typically at least as important as
severity, which we adopted for the coloring in our guiding example. In
general, hue is a suitable visual attribute for encoding qualitative in-
formation of at most 12 categories [48], which is typically the case for
properties like ‘Class’. At this point, we also decided to use the color
encoding of the user-defined check property consistently for all parts
of Visplause. Consequently, the distribution of severity levels or other
properties was henceforth displayed in dedicated optional columns.

In hindsight, we had dedicated the color channel very early to in-
dication frequency, a variable that could have been encoded more ef-
fectively using other means (e.g., area [26]). We also learned that in-
flexible use of color can be problematic in real-world projects, as cus-
tomers may have internal policies or associations from other tools that
prohibit certain uses. In this respect, encoding a customizable check
property was a more sustainable choice (LL03 - ‘Consider workflow
integration in color encodings’).
Using a dedicated color for property overlap: With the consistent
color-encoding of categorical check properties such as ‘Class’, we first
attempted to convey the proportion of each category for all columns of
the DQ overview. For example, the Indication Frequency Column sub-
divided the stacked bar by class. However, the perception of small bars
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could not be guaranteed, and the visual complexity was very high. Re-
flecting the principle of ‘overview first, details on demand’ [36] and
following user feedback, we instead decided to use a dedicated cat-
egory for overlap (e.g., ‘multiple classes’), with on demand disam-
biguation via drill-down (LL04: ‘Increased simplicity by a dedicated
category for overlap). Visualizing aggregates based on multiple cat-
egories in a dedicated color reflects the guideline of ‘visual simplic-
ity’ [8], while the ‘fidelity’ of the aggregated information is preserved
by small triangles encoding the percentage of data records for each
category in the Indication Frequency Column [8].
Encoding indication distribution using meaningful partitions: In-
dication Distribution Columns characterize the distribution of DQ
problems with respect to different aspects. Their key idea of partition-
ing data records was already envisioned in the sketch (Fig. 6), where
‘Num. Anomalies by Day of Week’ shows a temporal partitioning
into a weekly cycle, and ‘Num. Anomalies by Temp.’ a quantitative
partitioning of temperature values. We also proposed an alternative
scheme that defined one partition for each pixel, adjustable by resizing
the column. However, our domain experts preferred a less fine-grained
aggregation in terms of meaningful partitions for easier interpretation,
e.g., months for temporal partitioning or intuitive steps for quantitative
partitioning (LL05: ‘Meaningful partitions rather than maximal de-
tail’). This allowed partitioning schemes to add a dedicated partition
for missing values in the underlying time series (see ‘M’ in Fig. 4c).
Encoding indication distribution by area: Until the prototype stage,
relative indication frequency per partition was visualized using dis-
crete steps of color intensity (see the color legend in Fig. 7a). However,
readers of this visualization constantly referred to the legend to look
up the encoded magnitudes. Following considerations on channel ef-
ficiency [26], we decided to linearly map relative indication frequency
to the area of centered rectangles, with a minimal size of 2x2 pixels
for small non-zero frequencies (see Fig. 7b). Additionally, a desatu-
rated background supports the perceptual discrimination of segments
with and without indications (i.e., those with a white background).
We chose centered rectangle markers because they are automatically
aligned both horizontally and vertically, allowing for efficient compar-
isons in both directions. The new encoding allowed us to consistently
color rectangles by properties of the underlying checks (e.g., ‘Class’).
Supporting hypothesis generation in a linked view: In the sketch
(Fig. 6), the ‘Mutual Information’ column shows which time series
explains the indication pattern per row best. However, as the domain
experts stressed the need for inspecting more than one time series for
hypothesis generation, we started questioning whether an encoding of
this information within the tabular layout was appropriate. Instead, we
chose to address hypothesis generation using a linked ‘Statistical Sum-
mary View’ (Sec. 4.3.2), which provides two benefits: (1) It enables to
explain the indication pattern for any subset of data records defined by
selecting cells in the DQ overview, and (2) it shows whether multiple
time series provide similar amounts of information gain.
Providing simple, dashboard-like entry points: A key insight from
feedback at E-World concerned the configuration of Visplause. Many
experts liked the flexible drill-down, but stressed the necessity of sim-
ple, well-chosen entry points for adoption (e.g., Fig. 3a). Previously,
we started demonstrations with multiple columns and a drill-down by
time series. A simpler and highly aggregated starting point with drill-
down only on demand received much better acceptance by domain ex-
perts and was in line with the Information Seeking Mantra [36] (LL06:
‘Confusion of overview first with overwhelm first’).

6 IMPLEMENTATION ASPECTS

Visplause is implemented in C++. It uses OpenGL for rendering and
Gtk+ as GUI library. Different threads are responsible for rendering
views, handling user input, and the evaluation of checks, ensuring that
costly anomaly detection algorithms do not freeze the system [29].
Data Management: As outlined in Fig. 1, time series are represented
in Visplause as a multivariate data table (i.e., time stamps as entities),
plus meta-information defining properties per time series. Both can
be imported from CSV files, or from a database via ODBC, which is

typically preferred when monitoring regularly acquired data. Expert
users can also modify and extend the meta-information at run-time.
Check Management: We discriminate between two use cases for
check specification and evaluation: (1) Checks are created and eval-
uated in external data management or data warehousing systems. In
practice, this is often the case and needs to be supported for an integra-
tion into existing workflows and systems (G5). To this end, Visplause
allows the import of pre-evaluated checks as additional boolean-valued
time series. (2) Checks are defined within Visplause. For this purpose,
users may create and modify check rules in the script languages R,
Matlab, or Python. Scripted rules comprise a user-defined script as
well as a mapping for synchronizing time series within Visplause with
named variables in the workspace of the script language before and
after the execution of the script. These custom check rules can be
applied to time series to instantiate plausibility checks. For example,
applying the rule ‘non-zero at night’ to the time series PV 01, PV 02,
and PV 03 creates three concrete checks. Scripted checks are also use-
ful to leverage advanced algorithms for anomaly detection as provided
by existing software packages in languages such as R. Parameters of
user-defined checks, such as the script or the meta-information, can be
modified at any time, which triggers a re-evaluation of the check and
updates all views. Further details on the script integration are beyond
the scope of this paper.

7 USER FEEDBACK

In addition to feedback collected during the design process (Sec. 5),
Visplause has been deployed for one month to five domain experts
from two companies in the energy sector, i.e., a transmission system
operator and an IT-solution provider (see Sec. 2.1). The users include
experts tasked with analysis and reporting in asset management, the
classification of outage scenarios, or the optimization of control energy
acquisition. All energy experts had several years of experience in their
field. They do not have a strong background in visualization, however,
some of them had used generic data exploration software before.

As observed by previous work [18], the domain experts confirmed
DQ assessment as one of their most time-consuming tasks. Previously,
DQ assessment had involved inspecting raw data tables, time series
graphs, or sums of indications by user-defined plausibility checks in
tools like Excel. As a result, the effort for a detailed DQ assessment
was not considered justified in several cases.

After two hours of initial training, the experts used Visplause as
part of their routine workflows, e.g., prior to statistical modeling. Ac-
cording to the experts, Visplause in general allowed them to conduct
a thorough DQ assessment in a much shorter time. One user reported
that DQ assessments that used to take two hours now only took half
an hour to achieve the same level of confidence. Once a suitable set of
checks had been defined, consulting Visplause was fast enough to pre-
cede any analysis. Besides gains of efficiency, this increased the con-
fidence in the DQ for many cases which would previously not have
been inspected in detail. One expert emphasized that Visplause en-
abled him for the first time an efficient DQ assessment of five million
data records and dozens of time series.

As one negative aspect, the users stated that not all user interface
elements for view configuration were intuitive to find, and creating hi-
erarchies and column setups in the DQ Overview required some train-
ing. Once they obtained effective setups, however, they considered the
visualization as suitable for presenting DQ problems to other stake-
holders; the efficient overview and drill-down substantially facilitates
the argumentation of DQ problems to data providers. In particular,
they felt that creating check hierarchies along semantically meaning-
ful categories allowed them to make use of their domain knowledge to
structure checks in ways meaningful to them and other stakeholders.
Additionally, they particularly liked the Indication Frequency Column.
First, it allowed them to assess the overall DQ of entire data sets with
a single glance. Second, they were able to visually compare the check
results for a large number of checks, especially when sorted by indica-
tion frequency (which we have since made the default). Although they
were unfamiliar with scale-stack bars, they liked our final design and
found it easy to use and interact with.

The Experts particularly appreciated the indication-based selection
of data subsets for downstream processing. We were surprised that
their use of Visplause soon included overviews of script-based indica-
tors in contexts beyond DQ. Some experts used checks to select rep-
resentative training data. Tuning thresholds of scripted checks (see
Sec. 6) enabled them to conduct a sensitivity analysis before feeding
the resulting subset to a forecasting tool. According to these experts,
the tight integration of check modification and result inspection yields
a speed-up by a factor of ten over previous approaches for this task.

We have since, several months after the initial deployment, received
further informal feedback from our users. Several of them have incor-
porated Visplause in their workflows and use it frequently. One partner
plans to permanently install a Visplause-based dashboard for online
monitoring of energy data on a large info-screen in the company.

8 PROBLEM ABSTRACTION
The design of Visplause was guided by the described tasks and goals in
the context of the energy sector. However, showing prototypes to col-
laborators in other domains revealed that many aspects cover a much
broader scope. As a recent example, we have deployed a Visplause-
based application at an industrial manufacturing company since May
2016 (see supplemental material). In this application, dozens of quan-
tities are measured for each manufactured item, e.g. material den-
sity, surface smoothness, etc. All of these quality measures must lie
within pre-defined tolerance thresholds, otherwise, the item is dis-
carded. Aside from daily quality control, a goal is to understand rela-
tionships between product deficiencies and parameters like the speed
of production machines for process optimization (T2). For this appli-
cation, the data model is a multi-dimensional table of manufactured
items as rows. Attributes comprise a production timestamp, produc-
tion parameters and the numerical quality measures. Checks are used
to indicate items exceeding the quality tolerance limits. Based on
meta-information about quality measures (e.g., the assessed part of
the item, or the step in the production pipeline), Visplause provides a
structured overview of the type of quality problem and supports break-
ing down the results by production timestamp or process parameters.
Preliminary user feedback suggested that Visplause can effectively
support process quality control as well as defect analysis. The lessons
learned from the design process in the energy sector (Sec. 5) were con-
sidered directly transferable to the manufacturing application.

Comparing the data model and tasks of the manufacturing and en-
ergy contexts, the requirements of an application of Visplause can
be abstracted along multiple dimensions: (1) As opposed to regular
energy time series, the manufacturing data is a multi-dimensional
table of items with numerical, categorical and temporal attributes.
Checks do not rely on temporal semantics, and Indication Distribu-
tion Columns support numerical and categorical attributes as well (see
Sec. 4). (2) Instead of sensor meta-information (e.g., type or location),
the manufacturing application uses item parts or steps in the produc-
tion pipeline assessed by quality measures. Technically, all categori-
cal properties about checks and underlying data attributes can be
used to structure the DQ Overview, regardless of the application con-
text. (3) Instead of assessing energy time series with respect to DQ is-
sues, the manufacturing application uses checks for thresholding pro-
duction quality measures. In an abstract sense, checks can be seen as
evaluable statements computing a binary result for each data value
which reflects the presence of information with certain semantics.

We note that abstracting check results as sets of data records relates
Visplause to approaches of set-typed data as surveyed by Alsallakh et
al. [1]. However, most of the previous work focuses on representing
intersections but disregards set provenance and semantics. Moreover,
no set visualization so far fulfills the tasks and goals in Sec. 2.1.

As further examples from application domains beyond energy, we
collected initial feedback from long-term partners and experts in au-
tomotive engineering. In their opinion, Visplause could provide an
effective overview of user-defined constraint violations in the context
of a multi-objective optimization based on parameter studies. For ex-
ample, Indication Distribution Columns could show the distribution of
constraint violations over varied simulation parameters. Finally, one
expert from a collaboration in the healthcare sector suggested to use

Visplause as an overview of key performance indicators (KPIs) in the
context of business intelligence.

We thus see that the tasks and the data model of Visplause may
be applicable to a broad scope of problems. Further deployments and
evaluation for domains beyond energy are a key topic for future work.

9 DISCUSSION AND FUTURE WORK
DQ assessment is a topic of high practical relevance, as confirmed by
literature and our own experience. Visualization is often mentioned
as suitable for detecting DQ issues, however, little previous work ad-
dresses the routine assessment and validation of DQ issues for many
regularly acquired time series. We thus regard Visplause as an ap-
proach that fills this gap and supports well-defined tasks.

A key benefit of Visplause over previous work concerns its scala-
bility for large numbers of checks and underlying time series. The hi-
erarchical structuring enables domain experts to reason about the DQ
of many time series on semantically meaningful aggregation levels.
The use of partition-based columns furthermore avoids clutter for any
number of data records. As one limitation regarding scalability, our
current implementation employs vertical scrolling for tables exceed-
ing the available screen space. While scrolling is familiar to our users
who did not consider this a draw-back, it contradicts the principle that
eyes beat memory [26]. We thus intend to experiment with row-wise
focus and context similar to the Table Lens [31].

While we consider design aspects of Visplause as the main con-
tribution, the conceptual approach also follows the Visual Analytics
Mantra [21]: We analyze first by evaluating plausibility checks, show
the important by focusing on check indications, support to zoom, filter,
and analyze further via the hierarchy and various columns, and show
details on demand in linked views.

As one limitation of the data model, Visplause shows DQ problems
only for existing data records, while semantic gaps in the data require
an indirect specification via boundary records. Also, expressing indi-
cations in terms of data records is not always the most intuitive choice.
For example, a check for implausible daily patterns should specify in-
dications in terms of days rather than, e.g., hours. As future extension,
we intend to allow various granularity levels for counting indications.

As another plan for future work, we intend to extend our approach
for data cleansing, e.g., by imputing missing values. Information about
data modifications fits our abstraction of checks and could easily be
integrated within Visplause for overview and drill-down. Moreover,
we plan to add animated transitions for interactions like drill-down and
filtering. Finally, we plan to further evaluate Visplause by deployments
in the healthcare sector, and to investigate applications outside DQ
assessment.

10 CONCLUSION
This paper described Visplause, a new visualization approach for sup-
porting the routine assessment of DQ based on automated plausibility
checks. As a key benefit, Visplause provides a scalable overview of
check indications with extensive possibilities for drill-down. Based
on collaborations with partners from the energy sector, we identified
key tasks and illustrated how Visplause supports them. We discussed
design decisions and stated insights from a reflection of the design pro-
cess in the hope that they are useful also in other application contexts.

Visplause was designed to meet requirements of DQ assessment.
However, user feedback suggested a potential application also outside
the context of DQ for providing an overview and drill-down of indi-
cators in general. Motivated by the positive user feedback, we believe
that Visplause can become an important approach for making DQ as-
sessment more efficient and increasing the confidence in data. We will
also investigate further applications of Visplause for enabling a guided
analysis based on indicators.
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could not be guaranteed, and the visual complexity was very high. Re-
flecting the principle of ‘overview first, details on demand’ [36] and
following user feedback, we instead decided to use a dedicated cat-
egory for overlap (e.g., ‘multiple classes’), with on demand disam-
biguation via drill-down (LL04: ‘Increased simplicity by a dedicated
category for overlap). Visualizing aggregates based on multiple cat-
egories in a dedicated color reflects the guideline of ‘visual simplic-
ity’ [8], while the ‘fidelity’ of the aggregated information is preserved
by small triangles encoding the percentage of data records for each
category in the Indication Frequency Column [8].
Encoding indication distribution using meaningful partitions: In-
dication Distribution Columns characterize the distribution of DQ
problems with respect to different aspects. Their key idea of partition-
ing data records was already envisioned in the sketch (Fig. 6), where
‘Num. Anomalies by Day of Week’ shows a temporal partitioning
into a weekly cycle, and ‘Num. Anomalies by Temp.’ a quantitative
partitioning of temperature values. We also proposed an alternative
scheme that defined one partition for each pixel, adjustable by resizing
the column. However, our domain experts preferred a less fine-grained
aggregation in terms of meaningful partitions for easier interpretation,
e.g., months for temporal partitioning or intuitive steps for quantitative
partitioning (LL05: ‘Meaningful partitions rather than maximal de-
tail’). This allowed partitioning schemes to add a dedicated partition
for missing values in the underlying time series (see ‘M’ in Fig. 4c).
Encoding indication distribution by area: Until the prototype stage,
relative indication frequency per partition was visualized using dis-
crete steps of color intensity (see the color legend in Fig. 7a). However,
readers of this visualization constantly referred to the legend to look
up the encoded magnitudes. Following considerations on channel ef-
ficiency [26], we decided to linearly map relative indication frequency
to the area of centered rectangles, with a minimal size of 2x2 pixels
for small non-zero frequencies (see Fig. 7b). Additionally, a desatu-
rated background supports the perceptual discrimination of segments
with and without indications (i.e., those with a white background).
We chose centered rectangle markers because they are automatically
aligned both horizontally and vertically, allowing for efficient compar-
isons in both directions. The new encoding allowed us to consistently
color rectangles by properties of the underlying checks (e.g., ‘Class’).
Supporting hypothesis generation in a linked view: In the sketch
(Fig. 6), the ‘Mutual Information’ column shows which time series
explains the indication pattern per row best. However, as the domain
experts stressed the need for inspecting more than one time series for
hypothesis generation, we started questioning whether an encoding of
this information within the tabular layout was appropriate. Instead, we
chose to address hypothesis generation using a linked ‘Statistical Sum-
mary View’ (Sec. 4.3.2), which provides two benefits: (1) It enables to
explain the indication pattern for any subset of data records defined by
selecting cells in the DQ overview, and (2) it shows whether multiple
time series provide similar amounts of information gain.
Providing simple, dashboard-like entry points: A key insight from
feedback at E-World concerned the configuration of Visplause. Many
experts liked the flexible drill-down, but stressed the necessity of sim-
ple, well-chosen entry points for adoption (e.g., Fig. 3a). Previously,
we started demonstrations with multiple columns and a drill-down by
time series. A simpler and highly aggregated starting point with drill-
down only on demand received much better acceptance by domain ex-
perts and was in line with the Information Seeking Mantra [36] (LL06:
‘Confusion of overview first with overwhelm first’).

6 IMPLEMENTATION ASPECTS

Visplause is implemented in C++. It uses OpenGL for rendering and
Gtk+ as GUI library. Different threads are responsible for rendering
views, handling user input, and the evaluation of checks, ensuring that
costly anomaly detection algorithms do not freeze the system [29].
Data Management: As outlined in Fig. 1, time series are represented
in Visplause as a multivariate data table (i.e., time stamps as entities),
plus meta-information defining properties per time series. Both can
be imported from CSV files, or from a database via ODBC, which is

typically preferred when monitoring regularly acquired data. Expert
users can also modify and extend the meta-information at run-time.
Check Management: We discriminate between two use cases for
check specification and evaluation: (1) Checks are created and eval-
uated in external data management or data warehousing systems. In
practice, this is often the case and needs to be supported for an integra-
tion into existing workflows and systems (G5). To this end, Visplause
allows the import of pre-evaluated checks as additional boolean-valued
time series. (2) Checks are defined within Visplause. For this purpose,
users may create and modify check rules in the script languages R,
Matlab, or Python. Scripted rules comprise a user-defined script as
well as a mapping for synchronizing time series within Visplause with
named variables in the workspace of the script language before and
after the execution of the script. These custom check rules can be
applied to time series to instantiate plausibility checks. For example,
applying the rule ‘non-zero at night’ to the time series PV 01, PV 02,
and PV 03 creates three concrete checks. Scripted checks are also use-
ful to leverage advanced algorithms for anomaly detection as provided
by existing software packages in languages such as R. Parameters of
user-defined checks, such as the script or the meta-information, can be
modified at any time, which triggers a re-evaluation of the check and
updates all views. Further details on the script integration are beyond
the scope of this paper.

7 USER FEEDBACK

In addition to feedback collected during the design process (Sec. 5),
Visplause has been deployed for one month to five domain experts
from two companies in the energy sector, i.e., a transmission system
operator and an IT-solution provider (see Sec. 2.1). The users include
experts tasked with analysis and reporting in asset management, the
classification of outage scenarios, or the optimization of control energy
acquisition. All energy experts had several years of experience in their
field. They do not have a strong background in visualization, however,
some of them had used generic data exploration software before.

As observed by previous work [18], the domain experts confirmed
DQ assessment as one of their most time-consuming tasks. Previously,
DQ assessment had involved inspecting raw data tables, time series
graphs, or sums of indications by user-defined plausibility checks in
tools like Excel. As a result, the effort for a detailed DQ assessment
was not considered justified in several cases.

After two hours of initial training, the experts used Visplause as
part of their routine workflows, e.g., prior to statistical modeling. Ac-
cording to the experts, Visplause in general allowed them to conduct
a thorough DQ assessment in a much shorter time. One user reported
that DQ assessments that used to take two hours now only took half
an hour to achieve the same level of confidence. Once a suitable set of
checks had been defined, consulting Visplause was fast enough to pre-
cede any analysis. Besides gains of efficiency, this increased the con-
fidence in the DQ for many cases which would previously not have
been inspected in detail. One expert emphasized that Visplause en-
abled him for the first time an efficient DQ assessment of five million
data records and dozens of time series.

As one negative aspect, the users stated that not all user interface
elements for view configuration were intuitive to find, and creating hi-
erarchies and column setups in the DQ Overview required some train-
ing. Once they obtained effective setups, however, they considered the
visualization as suitable for presenting DQ problems to other stake-
holders; the efficient overview and drill-down substantially facilitates
the argumentation of DQ problems to data providers. In particular,
they felt that creating check hierarchies along semantically meaning-
ful categories allowed them to make use of their domain knowledge to
structure checks in ways meaningful to them and other stakeholders.
Additionally, they particularly liked the Indication Frequency Column.
First, it allowed them to assess the overall DQ of entire data sets with
a single glance. Second, they were able to visually compare the check
results for a large number of checks, especially when sorted by indica-
tion frequency (which we have since made the default). Although they
were unfamiliar with scale-stack bars, they liked our final design and
found it easy to use and interact with.

The Experts particularly appreciated the indication-based selection
of data subsets for downstream processing. We were surprised that
their use of Visplause soon included overviews of script-based indica-
tors in contexts beyond DQ. Some experts used checks to select rep-
resentative training data. Tuning thresholds of scripted checks (see
Sec. 6) enabled them to conduct a sensitivity analysis before feeding
the resulting subset to a forecasting tool. According to these experts,
the tight integration of check modification and result inspection yields
a speed-up by a factor of ten over previous approaches for this task.

We have since, several months after the initial deployment, received
further informal feedback from our users. Several of them have incor-
porated Visplause in their workflows and use it frequently. One partner
plans to permanently install a Visplause-based dashboard for online
monitoring of energy data on a large info-screen in the company.

8 PROBLEM ABSTRACTION
The design of Visplause was guided by the described tasks and goals in
the context of the energy sector. However, showing prototypes to col-
laborators in other domains revealed that many aspects cover a much
broader scope. As a recent example, we have deployed a Visplause-
based application at an industrial manufacturing company since May
2016 (see supplemental material). In this application, dozens of quan-
tities are measured for each manufactured item, e.g. material den-
sity, surface smoothness, etc. All of these quality measures must lie
within pre-defined tolerance thresholds, otherwise, the item is dis-
carded. Aside from daily quality control, a goal is to understand rela-
tionships between product deficiencies and parameters like the speed
of production machines for process optimization (T2). For this appli-
cation, the data model is a multi-dimensional table of manufactured
items as rows. Attributes comprise a production timestamp, produc-
tion parameters and the numerical quality measures. Checks are used
to indicate items exceeding the quality tolerance limits. Based on
meta-information about quality measures (e.g., the assessed part of
the item, or the step in the production pipeline), Visplause provides a
structured overview of the type of quality problem and supports break-
ing down the results by production timestamp or process parameters.
Preliminary user feedback suggested that Visplause can effectively
support process quality control as well as defect analysis. The lessons
learned from the design process in the energy sector (Sec. 5) were con-
sidered directly transferable to the manufacturing application.

Comparing the data model and tasks of the manufacturing and en-
ergy contexts, the requirements of an application of Visplause can
be abstracted along multiple dimensions: (1) As opposed to regular
energy time series, the manufacturing data is a multi-dimensional
table of items with numerical, categorical and temporal attributes.
Checks do not rely on temporal semantics, and Indication Distribu-
tion Columns support numerical and categorical attributes as well (see
Sec. 4). (2) Instead of sensor meta-information (e.g., type or location),
the manufacturing application uses item parts or steps in the produc-
tion pipeline assessed by quality measures. Technically, all categori-
cal properties about checks and underlying data attributes can be
used to structure the DQ Overview, regardless of the application con-
text. (3) Instead of assessing energy time series with respect to DQ is-
sues, the manufacturing application uses checks for thresholding pro-
duction quality measures. In an abstract sense, checks can be seen as
evaluable statements computing a binary result for each data value
which reflects the presence of information with certain semantics.

We note that abstracting check results as sets of data records relates
Visplause to approaches of set-typed data as surveyed by Alsallakh et
al. [1]. However, most of the previous work focuses on representing
intersections but disregards set provenance and semantics. Moreover,
no set visualization so far fulfills the tasks and goals in Sec. 2.1.

As further examples from application domains beyond energy, we
collected initial feedback from long-term partners and experts in au-
tomotive engineering. In their opinion, Visplause could provide an
effective overview of user-defined constraint violations in the context
of a multi-objective optimization based on parameter studies. For ex-
ample, Indication Distribution Columns could show the distribution of
constraint violations over varied simulation parameters. Finally, one
expert from a collaboration in the healthcare sector suggested to use

Visplause as an overview of key performance indicators (KPIs) in the
context of business intelligence.

We thus see that the tasks and the data model of Visplause may
be applicable to a broad scope of problems. Further deployments and
evaluation for domains beyond energy are a key topic for future work.

9 DISCUSSION AND FUTURE WORK
DQ assessment is a topic of high practical relevance, as confirmed by
literature and our own experience. Visualization is often mentioned
as suitable for detecting DQ issues, however, little previous work ad-
dresses the routine assessment and validation of DQ issues for many
regularly acquired time series. We thus regard Visplause as an ap-
proach that fills this gap and supports well-defined tasks.

A key benefit of Visplause over previous work concerns its scala-
bility for large numbers of checks and underlying time series. The hi-
erarchical structuring enables domain experts to reason about the DQ
of many time series on semantically meaningful aggregation levels.
The use of partition-based columns furthermore avoids clutter for any
number of data records. As one limitation regarding scalability, our
current implementation employs vertical scrolling for tables exceed-
ing the available screen space. While scrolling is familiar to our users
who did not consider this a draw-back, it contradicts the principle that
eyes beat memory [26]. We thus intend to experiment with row-wise
focus and context similar to the Table Lens [31].

While we consider design aspects of Visplause as the main con-
tribution, the conceptual approach also follows the Visual Analytics
Mantra [21]: We analyze first by evaluating plausibility checks, show
the important by focusing on check indications, support to zoom, filter,
and analyze further via the hierarchy and various columns, and show
details on demand in linked views.

As one limitation of the data model, Visplause shows DQ problems
only for existing data records, while semantic gaps in the data require
an indirect specification via boundary records. Also, expressing indi-
cations in terms of data records is not always the most intuitive choice.
For example, a check for implausible daily patterns should specify in-
dications in terms of days rather than, e.g., hours. As future extension,
we intend to allow various granularity levels for counting indications.

As another plan for future work, we intend to extend our approach
for data cleansing, e.g., by imputing missing values. Information about
data modifications fits our abstraction of checks and could easily be
integrated within Visplause for overview and drill-down. Moreover,
we plan to add animated transitions for interactions like drill-down and
filtering. Finally, we plan to further evaluate Visplause by deployments
in the healthcare sector, and to investigate applications outside DQ
assessment.

10 CONCLUSION
This paper described Visplause, a new visualization approach for sup-
porting the routine assessment of DQ based on automated plausibility
checks. As a key benefit, Visplause provides a scalable overview of
check indications with extensive possibilities for drill-down. Based
on collaborations with partners from the energy sector, we identified
key tasks and illustrated how Visplause supports them. We discussed
design decisions and stated insights from a reflection of the design pro-
cess in the hope that they are useful also in other application contexts.

Visplause was designed to meet requirements of DQ assessment.
However, user feedback suggested a potential application also outside
the context of DQ for providing an overview and drill-down of indi-
cators in general. Motivated by the positive user feedback, we believe
that Visplause can become an important approach for making DQ as-
sessment more efficient and increasing the confidence in data. We will
also investigate further applications of Visplause for enabling a guided
analysis based on indicators.
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