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ABSTRACT

This paper presents a first prototype of an interactive 3D recon-
struction system for modeling urban scenes. An Augmented Re-
ality scout is a person who is equipped with an ultra-mobile PC,
an attached USB camera and a GPS receiver. The scout is explor-
ing the urban environment and delivers a sequence of 2D images.
These images are annotated with according GPS data and used iter-
atively as input for a 3D reconstruction engine which generates the
3D models on-the-fly. This turns modeling into an interactive and
collaborative task.
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1 INTRODUCTION AND RELATED WORK

Generating 3D models of outdoor scenes in urban environments
is often a demanding task, but necessary for applications such
as mobile Augmented Reality (AR) [3, 12], interactive visualiza-
tion [2, 9], or model-based tracking [13]. Creating these models is
usually done in an offline process, using conventional 3D modeling
tools, and involves tedious hours of manual data preparation.

In contrast, many interesting applications demand that models
must be created on-line and on-site. For example, urban planners
like to spontaneously experiment with variations of their architec-
tural designs when inspecting a planned construction site.This
means that the 3D model generation must be performed interac-
tively to give immediate feedback. In general, most applications
that require digital reconstruction of architecture can benefit from
immediate feedback that allows to verify the reconstruction pro-
cess. Providing this interactivity is the aim of the work presented in
this paper.

However, traditional reconstruction techniques are aimedto-
wards a high-accuracy off-line work style, where data acquisition
and data processing are strictly separated. The objective of such
systems is to obtain the best scalability of the overall process by
full automation of the acquisition and reconstruction phase. For
example, Akbarzadeh et al. [1] use geo-registered video sequences
captured by a multi-camera setup mounted on a vehicle. This data
is then post-processed in a separate off-line stage and finally gener-
ates 3D models of the captured environment.

Another approach only uses aerial images for reconstruction ur-
ban scenes [8]. Area-based segmentation is used to cluster homo-
geneous photometric properties and calculate a dense map toob-
tain the reconstruction. This method can be used to reconstruct
large-scale architectural scenes. However, high quality aerial im-
ages must be available. Another approach is presented by Wang et
al. where the texture of facades is reconstructed based on a number
of photographs [16].

A different approach calledPhoto Tourismwas presented by
Snavely et al. [14]. In this project, similar images of the same
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building are taken from an existing database and processed in or-
der to generate a sparse 3D point cloud. The camera positionsand
orientations are reconstructed for each image and image-based ren-
dering is provided. Since this system aims at lots of similarimages,
the processing time for dozens of images is beyond one hour. Once
the 3D reconstruction is finished, the result can be observedin an
interactive viewer.

A large body of work on reconstruction algorithms can be found
in the robotics community but will not be discussed here. Robotics
as well as all the reconstruction works mentioned above aim at au-
tomated 3D reconstruction; none of them brings the human into
the reconstruction loop. We propose to employ a humanAR scout
who is able to spontaneously explore and reconstruct environments
which are not yet known. The resulting models can immediately
be inspected and refined by the scout or used by a broader remote
audience through a wireless connection. This transforms the usu-
ally off-line modeling task into an interactive task where agroup of
people and the scout generate models on-the-fly.

2 SYSTEM OVERVIEW

Our proposed interactive reconstruction system consists of two
main sub-systems, the scout and the reconstruction server (see Fig-
ure 1):
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Figure 1: An overview of the interactive 3D reconstruction system.
The AR scout stores current position and image data in the database.
The reconstruction engine gets a notification and calculates the 3D
model which is again stored in the database. Finally, the result can
be visualized for a bigger audience on a projection screen.

The AR scout acquires geo-referenced image data with a hand-
held AR device and delivers it to a remote reconstruction server.
The server is responsible for processing the individual images into



a 3D model (textured point cloud). Reconstruction is a very com-
putationally intensive task and cannot be carried out with sufficient
performance by a mobile computer. The server also stores theac-
quired and reconstructed data and makes it instantly available to
remote users. The reconstructed model is returned to the scout for
immediate 3D-registered display and inspection on the handheld
AR device. If deficiencies are detected, the scout can use theAR
device to acquire more data or prune erroneous reconstructions.

The AR scout is equipped with an ultra-mobile PC, an attached
GPS receiver, and a USB camera. While exploring the environ-
ment, the scout takes several images for instance of a targetbuild-
ing. These images are automatically annotated by current position-
ing data (taken from the GPS receiver). The enriched data is then
transmitted to a custom database store [15]. This database is de-
signed for multi-user data exchange based on the document object
model.

Whenever a new image is stored in the database, the reconstruc-
tion engine gets a notification and triggers the reconstruction pro-
cess (detailed in Section 3). The engine requires at least three dif-
ferent views in order to generate an initial 3D model. Each further
image is added in an iterative way and updates the model accord-
ingly within seconds. Again, the database server is used forstoring
the 3D model.

The AR scout equipment must be light-weight, connected to a
network and equipped with sensors. Our setup consists of a hand-
held ultra-mobile PC (Samsung Q1) with a touch screen and a front-
mounted camera. The AR user interface was developed using the
Studierstubesoftware framework1. Figure 2(a) shows the front and
the back side of the handheld.
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(a) Front view of the Samsung Q1 shows the live video capturedby the
USB camera. A tip on the display triggers the capture routine. The USB
camera and the GPS receiver are mounted on the back side.

GPS

notification

number of
satellitescoordinates

transmission

confidence
GPS

(b) The status bar of the capture application contains important feedback
for the user such as current position or confidence of the signal.

Figure 2: The AR scout setup is used for capturing annotated image
data in an urban environment.

A status bar (shown in Figure 2(b)) displays feedback on loca-
tion, quality of the GPS signal, number of satellites, and a trans-

1http://www.studierstube.org

mission notification. The user points the device at the target loca-
tion like a digital camera, and triggers the image capture which are
transmitted to the database together with corresponding GPS infor-
mation using a WLAN or 3G connection. The GPS receiver with
WAAS (wide area augmentation system) typically has a precision
of 2-5 meters. Three or more images of a location in the database
trigger the reconstruction procedure.

3 RECONSTRUCTION ENGINE

The reconstruction engine acts as a black box which takes 2D im-
ages and delivers 3D models. The main idea is that a sequence
of 2D images (containing a sufficient overlap in image contents)
is used to find correspondences between them. These correspon-
dences can then be used to estimate the camera positions where the
2D image were taken. The mathematical framework to generate3D
geometry from multiple images is presented in [6]. Once the initial
model is known, consecutive images can be related to each other,
and a textured 3D point cloud can be computed by a dense match-
ing approach. In the following, a brief overview of each individual
task is given. The engine’s pipeline is shown in Figure 3.

3.1 Camera Calibration

The reconstruction engine only works for calibrated cameras. For
this reason the intrinsic camera parameters (focal lengthf , and the
principal point(px, py)) are determined using a target calibration
procedure in advance (e.g. [7]). In case of fixed lenses, the calibra-
tion procedure is needed to be performed only once. In addition to
the camera intrinsic parametersf and(px, py) the utilized lens may
have a significant distortion effect on the image, i.e. linesappear
curved on the image. The parameters of this lens distortion can
be e.g. determined using images of man-made objects containing
straight lines. Computing the undistorted image from the original
one is based on a look-up table obtained from the distortion param-
eters. Once the camera is calibrated, the information is passed on
to the engine. Small deviations of the camera from the determined
calibration results can be addressed later by the bundle-adjustment
procedure (Section 3.3).

3.2 Feature Extraction

Since the input images contain too much redundant information for
actual the reconstruction, the most relevant information required for
finding correspondences must be extracted by using feature points.
Feature extraction selects image points or regions which give signif-
icant structural information to be identified in other images show-
ing the same objects of interest. We use Harris corners as feature
points [5] which are well suited for sparse correspondence searches
which is the case for urban scenes.

3.3 Correspondence and Pose Estimation

In order to relate a set of images geometrically it is necessary to find
correspondences. For the task of calculating the relative orientation
between images it is suitable to extract features with good point
localization as provided by the feature extraction step (see above).

The relative orientation between two views taken from calibrated
cameras can be calculated from five point correspondences. Hence
a RANSAC-based approach is used for robust initial estimation of
the relative pose between the first two views. We utilize an efficient
procedure for relative pose estimation [11] in order to testmany
samples quickly. The result of this procedure is the relative orien-
tation between these two views, but with unknown overall scale.
The relative pose translates into known epipolar geometry,which
represents the relationship of pixels in one view with images of the
corresponding camera rays in the second view. With the knowledge
of the relative poses between two views and corresponding point
features visible in at least 3 images, the orientations of all views
in the sequence can be upgraded to a common coordinate system
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Figure 3: The reconstruction pipeline consists of four main components: feature extraction, correspondence search, camera pose estimation,
and dense matching. Each captured image is passed through this pipeline in order to generate or enhance the 3D model.

by using an absolute pose procedure [4], again combined witha
RANSAC approach to increase the robustness. The pose of every
additional incoming image is calculated on the basis of 2D to3D
point correspondences, which is stronger than using the epipolar
relationship between two views alone.

Purely image based reconstructions are located in a local coordi-
nate system, which is upgraded to a world-reference system using
the measured GPS locations of the camera positions.2 The transfor-
mation from the local to the global system is a similarity transform
in the case of calibrated cameras.

The camera poses and the sparse reconstruction consisting of
3D points triangulated from point correspondences are refined us-
ing a simple but efficient implementation of sparse bundle adjust-
ment [10]. Our implementation allows the refinement of the camera
intrinsic parameters and the integration of GPS data with estimated
uncertainties as well. The output of this step are optimizedcamera
orientations and intrinsic parameters in the first place. Addition-
ally, sparse 3D points corresponding to the image features visible
in several views are refined, too.

3.4 Dense Depth Estimation

With the knowledge of the camera parameters and the relativeposes
between the source views dense correspondences for all pixels of a
particular key view can be estimated. Since the relative pose be-
tween the incorporated views is already known, this procedure is
basically a one-dimensional search along the depth rays forevery
pixel. Triangulation of these correspondences results in adense 3D
model, which reflects the true surface geometry of the captured ob-
ject in ideal settings.

We utilize a GPU-accelerated plane-sweep approach to generate
the depth map for each source view [17, 18]. Plane sweep tech-
niques in computer vision are simple and elegant approachesto im-
age based reconstruction with multiple views, since a rectification
procedure as needed in many traditional computational stereo meth-
ods is not required. The 3D space is iteratively traversed byparallel
planes, which are usually aligned with a particular key view(Fig-
ure 4). The plane at a certain depth from the key view induces
homographies for all other views, thus the reference imagescan be
mapped onto this plane easily.

If the plane at a certain depth passes exactly through the sur-
face of the object to be reconstructed, the color values fromthe
key image and from the mapped references images should coincide
at appropriate positions (assuming constant brightness conditions).

2Since the GPS antenna and the projection center of the cameraare very
close, we ignore the resulting offset between them.
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Figure 4: Plane sweeping principle. For different depths the homog-
raphy between the reference plane and the reference view is varying.
Consequently, the projected image of the reference view changes
with the depth according to the epipolar geometry.

Hence, it is reasonable to assign the best matching depth value (ac-
cording to some image correlation measure) to the pixels of the
key view. By sweeping the plane through the 3D space (by vary-
ing the planes depth wrt. the key view) a 3D volume can be filled
with image correlation values similar to the disparity space image
(DSI) in traditional stereo. Therefore the dense depth map can be
extracted using global optimization methods, if depth continuity or
any other constraint on the depth map is required. We employ a
simple winner-takes-all strategy to assign the final depth values for
performance reasons.

3.5 Output

A depth map is generated as described above for every tripletof ad-
jacent views, and the single depth images need to be fused into one
common model. Currently, we employ a very simple technique:
the depth maps are converted into colored point clouds (using the
reference view for texturing), and these point sets are concatenated
to obtain the combined model. This approach allows an easy in-
cremental update of the displayed model after generation ofa new
depth map. Future work will address the creation of 3D surface
meshes from the depth maps (e.g. [18]), which requires more com-
plex methods to assign a texture to the resulting model.

4 RESULTS

The first prototype was tested with multiple buildings at ourcam-
pus. Additionally, we used it to reconstruct an ancient brick wall



shown in Figure 5. Only some small clutter can be observed in the
bottom of the resulting model.

The reconstruction time depends on the image resolution andthe
number of extracted features. For the above example, each pass
of the pipeline takes less than one minute for uploading, feature
extraction, finding correspondences, dense matching, and updating
the 3D model.

Figure 5: These screenshots show a test dataset of an old brick wall
(with 6 input images). The image in the middle shows the reconstruc-
tion of the camera positions including sparse points. The image on
the button shows a screenshot of the final 3D model.

5 CONCLUSION

AR scouting allows on-line generation of arbitrary 3D models in
urban environments. The first prototype delivers promisingresults
and works well with a handheld ultra-mobile PC. The resulting 3D
models are currently represented by a textured 3D point cloud. Due
to the GPS information, the reconstructed models are available in
a global coordinate system and can be registered with available 3D
geographic information systems.

In the near future we plan to replace the point cloud models
with true surface meshes generated by a robust and incremental
depth map integration technique. We also intend to test physically
distributed collaborative 3D modeling with multiple scouts explor-
ing the environment simultaneously and reconstructing larger areas.
We also intend to perform a detailed quantitative analysis of the ob-
tained models in terms of their reconstruction accuracy compared
against conventional off-line reconstruction techniques.
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