
Reconstruction of Textured Models
from Multiple Views

Heinz Mayer1, Konrad Karner2, and Alexander Bornik2

1 Computer Graphics and Vision, Graz, University of Technology
email: mayer@icg.tu-graz.ac.at

2 VRVis Research Center for Virtual Reality and Visualization
email: karner@vrvis.at

Abstract:
This paper compares two di�erent methods to reconstruct textured models from real images. View
Dependent Texture Mapping (VDTM), one of the investigated methods, executes the texturing dur-
ing the rendering phase using the real images. In the second method, the multiresolution texture
mapping, a texture map is calculated in a preprocessing step. We show, that multiresolution tex-
ture mapping outperforms VDTM in all investigated speci�cations which are geometric complexity,
occlusion handling, rendering performance and rendering software support.
1 Introduction

The reconstruction and visualization of real world objects is becoming an increasing research area
in both the computer graphics and the computer vision community. In our approach we concentrate
on the reconstruction of textured models from multiple real images. Having a set of oriented input
images as shown in Figure 1(a) and a geometric description from a photogrammetric modeling step,
the goal is to reconstruct a synthetic textured model. A �rst result of one presented method can be
seen in Figure 1(b). In the following chapter we describe two di�erent methods to texture polygons.

(a) Input data consist of multiple views and
a geometric representation of the scene.

(b) The goal. Reconstruction of a textured
model of the building.

Figure 1: Problem description.



real viewpoint 1 real viewpoint 2

virtual viewpoint

P1 P2 P3

α1 α2

Figure 2: View-dependent �t function.

A comparison between these two methods is given in chapter 3.
2 Textured Models from Multiple Views

Over the years a number of methods to capture shape and surface properties are invented. In
this paper we focus on methods using imaging sensors. Furthermore, the approach combines the
information from all views according to their geometric resolution. Additionally, the method operates
on standard graphics hardware to remain interactive.
Sato et al. [6] presented a method to capture the shape, a parametric re
ectance model, and a texture
map by using a robotic arm, a CCD camera, and a laser range �nder. Although the method delivers
good results it assumes that the object can be handled by the robotic arm to reconstruct the geometry
and texture from di�erent views. A couple of methods can be found in the literature which focus
on the automatic stitching of image sequences [7],[3]. All of them exploit image correspondences
to reconstruct the geometric transformation between them. These methods ignore the di�erent
geometric resolutions and occlusions within the input images.
2.1 View Dependent Texture Mapping

2.1.1 Method outline

The method presented by Debevec [1] avoids the reconstruction of a unique texture from multiple
images by doing this reconstruction during the rendering phase. The scene objects are textured with
all the images from the data acquisition. The �nal texture results from a projective texture mapping
of the original images combined by alpha blending. The alpha values are calculated according to the
angle between the viewing direction of the synthetic scene and the viewing direction of the image
acquisition. The lower this angle the more likely the texture represents the correct surface details of



the object. Due to perspective projection this blending has to be done on a per pixel base. Figure 2
illustrates the geometric relationship. It shows two real viewpoints for which input images exist. The
blending function which depends on the ratio between the two angles �1 and �2 changes smoothly
from point P1 where the image from viewpoint 2 is the best view to point P3. Furthermore, visibility
calculation for every polygon in every view has to be done in a preprocessing step. Doing so prevents
artifacts in the resulting texture due to self-occlusion.
Unfortunately, the calculation of the blending factors on a per pixel base for a reasonable number of
images turns out to be very time consuming, so interactive rendering in real-time is impossible.
2.1.2 Interactive Rendering

An e�cient hardware implementation of view dependent texture mapping can be found in [2]. This
solution solves the problem by rendering the whole scene choosing only the best 3 views for each
polygon. In addition blending factors are calculated per polygon.
In order to work properly it is crucial to ensure a unique mapping between the polygons and the
viewpoints. In most cases there exist some polygons only partly visible from some viewpoint. Thus,
the polygons of the scene have to be clipped against the viewing frustum of each viewpoint to solve the
problem. In addition occlusion is handled by clipping against shadow volumes formed by occluding
polygons and viewpoints.
Uniformly sampling viewpoints across the front face of each polygon results in the best three views
to use for rendering. This information is stored in a data structure called view map. As the number
of sampling points is constant the blending factors for each polygon can be easily calculated using
barycentric coordinates within the triangle of the sampling mesh a virtual viewpoint corresponds to.
The barycentric coordinates are very useful in this context, because the always sum up to 1 for any
point located within a triangle. This property makes them a good choice for blending factors.
Rendering a scene using the view map is a three stage process, as most of the polygons have to be
rendered three times using the appropriate blending factors and texture images.
2.2 Multiresolution Textures

As outlined in Section 1 we can bene�t from an existing platform to reconstruct a 3D model with
registered views. The overall method to calculate a texture map for a virtual object from multiple
views of a real-world object is outlined in Algorithm 1.
Algorithm 1 Method outline.
1: for all polygons of the reconstructed model do
2: build the quadtree using all views
3: extract a texture with the desired resolution
4: end for



Model Space

M
-1

A[R
-1

T ]
Image Space

u

v

0

1

0 1

Texture Space

X

Y
Z

O

(u0,v0)

(X0,Y0,Z0)

(x0,y0)

Figure 3: Geometric relation between texture-, model-, and image space.

2.2.1 Geometric Transformations

The geometric relation between an image of an object from a registered view, the 3-dimensional object
itself and the texture map are shown in Figure 3. In a �rst step texture coordinates are mapped to
object coordinates using an inverse mapping function M �1 which is de�ned for a bounding rectangle
around the object to be textured.
The second transformation is the well known projective transformation. It can be further subdivided
into an a�ne, a perspective and an Euclidean (3D rotation R and translation T ) transformation.
The resulting transformation

~x = A hR�1 T i ~X (1)
maps arbitrary 3D points to coordinates within the image. A more detailed description of all these
transformations can be found in [4].
2.2.2 Texture Reconstruction

Our method of texture reconstruction is based on an approach initially introduced by Ofek et.al.
[5] for elimination of specular highlights. It uses a quadtree as the core data structure. This allows
to insert the texture elements (texel) at the quadtree levels according to each elements geometric
resolution. Insertion into the quadtree is performed by projection of corner vertices of texture space
into image space using the following transformation that combines the two transformations from
section 2.2.1.

~x = A hR�1 T i
� M �1v (2)

After the transformation step the size of the resulting quadriliteral in image space is calculated.
Texture space is subdivided recursively until the projection size matches a single pixel. Color values



Occluder polygon

Polygon & texture quadtree

Center of
projection

Projected occluder polygon

Figure 4: The in
uence of occluder polygons to the quadtree structure.

are stored within the nodes of the quadtree as well as the size. Multiple entries are combined using
the size to weigh the color values. This procedure ensures that parts with higher resolution are more
dominant than parts with lower resolution.
After the insertion of images from multiple views some parts of the quadtree might still not contain
any values. Therefore, the information is distributed between the levels by propagating the entries
up and down the quadtree.
2.2.3 Occlusion Handling

Up to now we assume that the images used for texture reconstruction contain the correct texture
information for the surface, which is not true in case of occlusion. Three possible occlusions are:

1. self occlusion - parts of the object are in front of others
2. occlusion by a modeled object - in this case the occluder object has to be present in the

geometric representation
3. occlusion by a non-modeled object - small objects, transient objects, or object that are

hard to model (e.g. trees)
In case that any type of occlusion occurs, the algorithmic frameworks explained so far fails. Figure 4
shows how an occluding polygon in
uences the content of the quadtree data structure. Color values
from the occluding polygon would enter tree nodes in the region marked grey leading to artifacts
in the texture output. Visibility calculations derived from the geometric model in combination with
the registration of each particular view are used to selectively insert pixels into the texture quadtree.
Thus, recursion is carried out until the highest resolution within the input image is reached or the
corresponding part of the quadtree is not visible from that view. Using this method distorting color
values can't enter the quadtree.
For the third possible occlusion case, non-modeled occlusion, deterministic visibility calculations are
not possible. Instead we employ outlier detection mechanisms. Di�erences in the pixel color for a
particular quadtree node are assumed to relate to di�erences in resolution. But generally speaking



median(Pi)

P1 Pm

Polygon &

texture quadtree

Figure 5: Pixel stack from one quadtree node and occlusion detection in principle.

they are rather small. The usage of weights ensures that higher resolution information is preserved.
In case of occlusion the color values are likely to di�er from the other values. We employ a median
�lter to single out undesired values. Therefore, we store the color values and the size for each tree
node in lists rather than combining them immediately. After the insertion of all images the median
can be calculated for all the nodes of the tree. Color values outside of a user speci�ed range around
the median are assumed to be values from occluders. Outliers can be successfully removed having
at least three entries per node. Unfortunately, it is hard to predict the number of entries per node
in advance, so it is a good idea to use a large number of images for each object to ensure that at
least 3 entries per node are present. Figure 5 shows how our median �lter works in principle. The
result is a multiresolution representation of a texture without unwanted occlusions from modeled
or non-modeled objects. By selecting a particular quadtree level a texture with �xed geometric
resolution can be extracted. In combination with the geometric description of the scene a virtual
model is created for visualization issues.
3 Comparison and Results

Our implementation of multiresolution textures from multiple views poses a powerful framework
for texturing complex scenes taking into account modeled and non-modeled occlusions. In addition
specular highlights are removed. Due to the fact that we operate on standard VRML-�les the output
can be viewed using any VRML browser. The outcome is delivered in multiple spatial resolutions,
computational complexity depends on the desired spatial resolution and can be speci�ed by the user.
This feature and the fact that our method works o�-line clearly outplays view-dependent textures,
which have the following drawbacks

� Geometric complexity increases in contrary to our method due to the intersection with viewing
frustums and shadow polygons (see Figure 6).



Figure 6: VDTM problem 1: The increase of geometric complexity.
Occlusion due to traffic sign

(a) Occlusion conservation.

Suppressed occlusion

(b) Occlusion supression.
Figure 7: VDTM problem 2: Inappropriate occlusion handling. The angle between orientation of the
input views and the virtual viewpoint are used for the blending function. Therefore, results according
to occlusion handling vary with viewing direction.

� Inappropriate occlusion handling. Non-modeled occluding objects can't be removed. Even
worse, views showing the occluding object in the center of the �eld of view are preferred (see
Figure 7). (Debevec suggests to eliminate by hand masking)

� Multiple rendering steps require higher hardware performance.
� Specialized rendering software is necessary - we can use any VRML-browser.

References
[1] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and rendering architecture from photographs:

A hybrid geometry- and image-based approach. In Computer Graphics (SIGGRAPH '96 Proceedings), volume 30,
pages 11{20, New Orleans, Lousiana, 1996.

[2] Paul E. Debevec, Yizhou Yu, and George Borshukov. E�cient view-dependent image-based rendering with pro-



jective texture-mapping. In 9th Eurographics Workshop on Rendering '98, pages 105{116, Vienna, Austria, June
1998. Eurographics Association.

[3] M. Irani, P. Anandan, and S. Hsu. Mosaic based representations of video sequences and their applications. In IEEE

International Conference on Computer Vision, pages 605{611, Boston, MA, 1995. IEEE Computer Society Press.
[4] Heinz Mayer, Alexander Bornik, Joachim Bauer, Konrad Karner, and Franz Leberl. Multiresolution texture for

photorealistic rendering. In Computer Graphics (SCCG '2001 Proceedings), In Computer Graphics Proceedings,
Annual Conference Series, 2001, pages 174{183, Budmerice, Slovakia, April 2001. Comenius University Bratislava.

[5] Eyal Ofek, Erez Shilat, Ari Rappoport, and Michael Werman. Multiresolution textures from image sequences.
IEEE Computer Graphics and Applications, 17(2):18{29, March-April 1997.

[6] Yoichi Sato, Mark D. Wheeler, and Katsushi Ikeuchi. Object shape and re
ectance modeling from observation. In
Computer Graphics (SIGGRAPH '97 Proceedings), In Computer Graphics Proceedings, Annual Conference Series,
1997, pages 379{387, Los Angeles, California, August 1997. ACM SIGGRAPH.

[7] R. Szeliski and H. Shum. Creating full view panoramic mosaics and environment maps. In Computer Graphics

(SIGGRAPH '97 Proceedings), pages 251{258, Los Angeles, California, 1997.

Parts of this work have been done in the VRVis research center, Graz & Vienna/Austria
(http://www.vrvis.at), which is partly funded by the Austrian government research program Kplus.


