Vessel Tracking in Peripheral CTA Datasets — An Overview
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Abstract nine datasets available for testing and the appearance of ves-

sels in the dataset. In Section 3, we describe the methods
In this paper, we describe the results of the literature re- for vessel segmentation found up to now. In Section 4, we
view focused on the peripheral vessel segmentation in 3Ddiscuss experiences and potentials of each method for the
medical datasets, acquired by Computer tomography an-task of peripheral vessels CTA segmentation. Conclusions
giography (CTA) of the human leg. follow in Section 5.
The fundamental aim of such a segmentation task is a
robust method for the detection of main vessels in the lego> pata Acquisition and Description
that simultaneously preserves the vessel calcification (the
sedlme_nt is called plaque) and aII_ows Iocallzatl_on of vessel Computer tomography angiography (CTA) reconstructs
narrowings (called stenoses). This segmentation has to be .
. . ; : a whole 3D volume from a large amount of X-ray projec-
free from artifacts, i.e., without false detections of stenoses . . . . ;
. L . tions. The main arguments for CTA in the diagnosis of
and without false omitting of any stenotic part. The paper

. .~ PAOD are its non-invasiveness, ability to visualize calcifica-
collects seven methods applicable for vessel segmentation.,. 7
tion, lower costs of the whole examination, (currently) bet-

ter spatial resolution than magnetic resonance angiography
. (MRA), better availability of CTA compared to MRA, and
1. Introduction less amount of contraindications (e.g., metal foreign bod-
ies). The first three arguments are essential also in compar-

The aim of the running project is to develop a fast and ison to the current “gold standard technique”—digital sub-
robust method for vessel and calcification segmentation,traction angiography (DSA).
which requires a minimum of user interaction or concen-  On the other hand, the amount of data produced by CTA
trates the interaction into a minimal number of interven- is huge (typically about 512x512x(900-1500) slices, which
tions. The method will be used for diagnosis of periph- occupy 450-750 MB of memory). To be able to apply this
eral arterial occlusive disease (PAOD), a serious disease ofechnique in clinical praxis, such amount of data can not
modern ages, which can be treated by surgery, if the detailshe processed manually and a fast and robust vessel tracking
about vessels and calcifications are known. The input 3D method is necessary.
datasets are acquired by Computer Tomography Angiogra- The tracking method has to take the following aspects
phy (CTA). into account. The signal from vessels enhanced by an injec-

The aim of this paper is a literature research on the topiction of the contrast agent is not homogeneous—one reason
of vessel segmentation and information about the prelimi- is the soft and calcified plaque present in the vessels, which
nary tests of interesting methods. It gives an overview of blocks the distribution of the contrast agent, second is the
methods dealing with different kinds of vessel segmenta- quality of the injection protocol. The scanning resolution
tion, i.e., not only with peripheral vessels and not only for causes a partial volume artifact (PVA), when smaller struc-
CTA, as described later. The reasons are twofold: Firstly, tures share one sampling voxel and their “average” variable
only very few articles about CTA exist (or have been found is reported. The density values of enhanced vessels overlap
by the authors), and secondly, the principles of 3D segmen-with values of low density bone and marrow, the same is
tation methods from different modalities can be adapted for true also for calk and bone. The vessel diameter varies dras-
the goal of the CTA segmentation. tically, from 45 in abdomen down to 1 voxel in the lower

The presented text has the following structure: In Sec- part of the leg. Complications cause also the spatial vicinity
tion 2, we briefly characterize the acquisition technique, of vessel and bone and a fuzzy border between the vessel



600

Pixel values

—— Average values

500
400 by
300 ¥ ‘,

200 + H il i

Value[HU]

100 || T

mmmmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmmmm

Slice number - starts from the foot

Figure 2. Topogram image of dataset No. 8
with a dark line indicating the manually seg-

1 2 3 mented vessel of the left leg and the voxel
density values along the vessel together with
Figure 1. First three datasets in a 3D view the average values of density from a 3x3 sur-

rounding of the center-path

and the bone.

We have tested four of the the algorithms on nine datasets 1o get a clearer picture of how the vessels are represented

in sizes from 169 to 1134 slices (a typical CTA dataset hasjn the datasets see [8], more details about one of the datasets
900-1500 slices), representing the typical covered volumecan pe found in[7].

of (250 to 3802 x (500 to 1000 mn?. Slice resolution
(slice pixel size) from 0.25 for a detailed dataset to a typ-
ical pixel size of 0.5 to 0.75mm. Best segmentation results
were achieved for 2 mm thick reconstructed slices of 1 mm
spacing. The collimation of the 4-detector CT scanner was In this section we summarize the knowledge obtained
mostly set to 2.5 mm, better results were achieved for 1 mm.from the literature review on the topic of vessel segmen-
The first three datasets are shown in a 3D view in Figure 1. tation. The goal is a robust method for the vessel segmen-
A typical outer vessel shape is circular or slightly ellip- tation from CTA datasets. Since only few technical articles
tical. If calcificationis present, it is situateh the vessel ~ USing this modality for a vessel display were found, this sec-
and the inside profile becomes considerably irregular. Thetion collects everything about segmentation of vessel ob-
densities are measured by CT in Hounsfield Units (HU). In jects obtained until now, describes the principles and tries
our CTA datasets, the vessel blood with a contrast agent had0 depict problematic steps of each method. Most of the
the densities varying from 150 to 260 HU, the non-calcified Methods described in studied articles deal with DSA (digi-
plaque has about 80 HU and the calcified plaque deposits@l subtraction angiography) and MRA (magnetic resonance
about 320 HU-1500 HU. angiography). . _ .
The vessel density distribution in a manually selected " ©F details about the methods read this section, for dis-
vessel in the left leg (see Figure 2) shows two large drop- cussion about their applicability in the task of 3D vessel

downs in the density values, above the knee (slices 3gp_Segmentation see Section 4.

530) and in the upper part close to the hip (slices 685— ]

741). These decreases of the contrast agent concentrationd- 1. Threshold-morphological method

are caused by two stenoses, which drastically reduce the

blood flow and therefore also the concentration of the con-  The outline of this section results from personal commu-
trast agent. The blood flow is spread into small collateral nications with Miles SrAmek from the Austrian Academy of
vessels. Below the large stenosis above the knee, bloodSciences. As already mentioned in Section 2, both tissues of
returns to the vessel and the concentration increases backnterest, namely vessels and calcifications, overlap in their
In fact, it is even higher, since the contrast agent cumulatesCT density range with bone tissue. Therefore, a technique
its concentration here. capable of independent labeling of all three tissue types is

3. Vessel Segmentation Methods



necessary. In general, two complementary strategies car{fone for each branch) is created and inserted to the graph.
be followed: An indirect one, in which the bone tissue is The new wave parts are sorted according to the number of
identified and removed from the CT data by means of mask-voxels and processed from the largest to the smallest one.
ing. In this case vessels and calcifications remain the tissue§ his results in the construction of the vessel tree in a top-
with the highest voxel density, which enables a straightfor- to-bottom order. Each new branch gets a new label, except
ward application of subsequent processing and visualizationfor the largest one (75% of the current wave), which holds
techniques. And a direct one, in which the vessels and calci-the current label. During the visualization step each label is
fications are segmented and labeled from the original data. assigned a different color to show the hierarchy in the vessel
Sramek prefers the indirect approach since bones aretree.
much thicker objects than vessels and, therefore, their seg- For a correct branch detection (to avoid over-branching
mentation is less sensitive to imaging artifacts (partial vol- in places with a high vessel curvature), the wave correction
ume effect), and bone segmentation errors do not have sds necessary to assure the next wave step would be perpen
dramatic consequences as the segmentation of vessels calicular to the actual vessel diameter. Details in [25, 26].
have (e.g., missing vessel segments).
According to the nature of the CTA datamek recom- ~ 3.3. Vessel enhancement and tracking
mends a thresholding, supplemented by morphologic op-
erations and a connected component labeling as the most The application area is vessel segmentation of abdominal

promising segmentation technique. and carotid arteries in MRA.
The principle of this three stage algorithm ([9, 10], sim-

ilar approaches [14, 18, 19, 22]) is at first to do a prepro-
cessing of the dataset by a 3D filter (vesselness opevator
L . ) . which enhances tubular structures, then to track the tubular
The application area of Wave algorithm is vessel tracking structures in 3D space by finding the path with a minimal

in CTA, M_RA (vessels of Iiyer). . cost, which goes through the centerline of the vessels, and
Cornelia Zahlten described the Wave vessel tracking a"finally to detect the vessel borders.

gorithm in her PhD thesis[26]. She mentioned two ap-

proaches and used the second one: al. [10] is based on the eigenvalues of a Hessian matrix (a

|. Hysteresis thresholding with skeletonization and iy of partial secondary derivatives) evaluated in each
symbolic graph [11, 21]. Object pixels are selected by iyq| of the image in different scales Its response is max-

hysteresis thresholding: The histogram is divided into three ;.41 when the scale of the operator matches the size of the

parts—obiject, background, and overlapping part. Pixels\egqe| Therefore the operator simultaneously depicts the
from the overlapping part are added to the object only if | a5sel size.

they are connected to object pixels. The objectis then skele- 4 each voxel, the filtering is done in different scales
tonized by erosions and the distance transformation is theny (Omin, Omay) as follows: After computation of the eigen-
computed to determine the diameter of the vessels. Finally,,5,es tr,1ey are ordered so thaf| < |A2| < [As|. The re-

a symbolic description via a graph is constructed, where thespecting eigenvectots, U, andds then point out the singu-
vessel bifurcations and vessel ends are represented as nodgg girections:d; along the vessel, ariih, U the directions

and the vessel segments as links of the graph. in an orthogonal plane. The value of the vesselness opera-
_ Il Region growing with simultaneous graph genera- oV (x, g) is than computed and the highest response over
tions [26].This is a region growing approach enriched by e scales is reported as the response of the vesselness fil-
bifurcation detection and vessel graph generation. At first, (o \/ (x). The scales whereV (x, o) reaches its maximum

a seed point is put interactively near the root of the vesselyetermines the size of the vessel with center in vexel

tree. Then, the wave goes through the object. The wave is  The value of vesselness operadix,o) for a given

a connected list of voxels belonging to the vessel that havegcgleq in voxel x is for brighter vessels in the darker en-
been added in the current step. Until now it is a normal \;ironment defined as:

flood-fill algorithm with 26-connectivity voxels, each voxel

3.2. Wave vessel tracking

The vesselness enhancement fillér of Frangi et.

remembers where the wave has come from (26 binary la- V(x,0) = 0 ... if [A2] >0o0r|As] >0,
bels) and the wave direction correction can be applied for = [1—exp—R4/2a?)]exp(—R3/2b%)[1—
high curvature vessels. exp(—S2/2c?)] ... otherwise.

The major difference to the classical region growing is in
the bifurcation detection and the simultaneous graph con-
struction. If the voxels in the wave (newly added voxels in
current step) are not mutually connected, the bifurcation (n- e Anisotropy termRa = |A2|/|A3| should be close to 1
furcation) is detected and an appropriate number of nodes (reflects the cross-sectional symmetry).

The operator consists of three parts normalized to have
the response in intervéDd, 1):



e BlobinessRg = |A1]/+1/|A2||A3| should be small. to their test image, where the best parameter setting was
] o=1w=21| =2, it seems thaho integration over set of
e Degree of image content scales is necessary!
S=v/|M1|2+|A2]2 + |A3]2 should be large.

Parameters, b, ¢ tune the sensitivity of the filter to de-  3.5. Direct vessel tracking in 3D
viations inRa,Rg andS. Typical values used in [10] are

a=b =05 andc = one half of the maximal Frobenius The application area is CTA of abdominal aorta and
norm of the Hessian matrices, i.e., one half of the length of MRA.

the vector of lambdaé\1,A2,A3). Another possibility is to Wink et al. [24] described an interactive segmentation
use a normalization by the maximal intensit285?I may method, which works locally, without preprocessing of the

The operator enhances the tubular structures, filters outwhole dataset and needs about 10s per vessel. The user se-
blobs and plateau-like structures, but also reduces the vesseects two start-pointé andB in the thick part of a vessel
diameter, has dropouts at bifurcations (detects them as to band runs the tracking algorithm. The points give a possible
plate-like) and is highly sensitive to bones and calcifications direction of the vessel centerlie= B— A. The method
in CTA datasets. estimates the position of the next candidate pGinn the

After filtering by a vesselness operator, the vessel cen-direction of vectoid, in the distancé based on the current
terline is detected by 3D snakes and modeled by B-splineminimal vessel diameteaiy,,. Preciselyb = admin, where
curves, then the vessel wall is segmented and modeled by & is a given constant.

tensor product B-spline surface. Then the precise position of a new poley is com-
puted. In the square surroundings of the candidate @int
3.4. Real time vessel enhancement which is perpendicular to the vessel axis directirthey

compute for each point the likelihood that it is a center point
The application area is real-time segmentation of DSA of the vessel. This is done by casting of a fan of rays from
images. The principle of this method published by Poli and €ach point in the square. Each ray ends at voxel that localy
Valli [16, 17] is similar to the approach of Frangi et al. (see |00ks as the vessel border. Then, they detect the most pos-
Section 3.3). Both use Gaussian filters in different scalessible vessel center poiew in this square and store this
for vessel enhancement. Cagnoni et al. [1, 2] applied thennew position as a new centerline end. It becomes the part of
a genetic algorithms optimization. The main points of Poli up-to-now detected vessel and a new candidate pointis gen-

and Valli’s algorithm are: erated in the computed axis direction. The estimated point
C need not to lie inside of the vessel—it is sufficient when
e Application of directional filterswith different half- the true vessel center lies in the square around it [24, Fig. 8].
widthsw and half-length$ (= ko, k=1,2,...). The sizes of this square is computed as= 3b, wheref3 is

« Separation of the Gaussian filteromputation into ~ @nother given constant. -
atomic filter computationgto achieve aeal-time re- The center likelihood is computed as follows: For each
sponsgconvolution is a linear operation, so a convo- pair of rays in opposite directions the likelihood of being-

lution with a big kernel can be done by addition of the a-center is computed as a ratio of the shorter to the longer
results of convolutions from two smaller filters,. . .). of the distances to the vessel border. The border is detected

L o ) as a falling gradient in the same direction as the direction of
* Application of avalidation step to ignore the response o 5y This has an advantage since using this approach the
to step edges-the filter response is accepted if also o qer of bright vessel or the end of calcification is found.
two plxels in the d'Sta.nC&V perpendicularly tai are The authors also proposed a possibilitydece a search
outside of the vessel, i.e., have lower values than a cen-yiraction to the central vessel direction, lianit the curva-

tral pixel. The distances should be larger then the ., o 4 vesseby a coefficient and teearch a whole treef
largest structure of interest. This step removes nega-

. | h | bord d noise. bt al cEOSSibIe vessels and continue in the direction of the highest
tive values near the vessel borders and noise, but alsqy,m, of center likelihoods. They also proposed an approach,
thin vessels after branching from the thick ones.

which is based on the same principle as our modification
e Hysteresis thresholding of the validated images helpsof the live wire method (see Section 4.6)—namely to de-
if the noise is too high. fine start- and end-points and to find the vessel centerline
by the use of the dynamic programming or tree search. The
To reduce the filtering artifacts, the authors decomposemore points are defined, the more the searched data space
the directional derivatives not only in two directions but s reduced. A similar tracking approach calliedaginary
in fourn=[1,0],[0,1], [@, ‘/75], [*/75, —‘/75] and as aresult, catheterwas published as a work in progress by Verdonck
they take a maximum response overialy,|. According et al. [23].



3.6. Live wire and Intelligent scissors An important aspect is the splitting of large amount of
available heuristic knowledge into separate blocks, which

The application area is a boundary segmentation of anySimplifiES integration of new heuristic models. Also the

object. feedback strategy, which allows re-computation of missing
The live wire (LW) method [5, 6] was originally de-  attributes and the updating of interpretation labels makes
signed for a 2D interactive segmentationbafundariesin the method more robust.

difficult images with faint signal of boundaries or even gaps
in boundaries, for objects with similar boundary properties 4 Applicability of the Methods
around them, and for regions distorted by noise. In gen-
eral, it speeds-up the user interaction by interactive offering

the boundary segments between the user defined start-point I_n this secuo_n, we descn_be our experience with t.h(? al-
and the current position of the cursor. After selection of gorithms described in Section 3 and collect our opinions

about the applicability of described methods to the task of

the end-point of the segment, it becomes a new start-point | tation in CT . hv datasets. Up t
and the whole process of boundary segment selection startg©SS€! segmentation in angiograpny datasets. Lp 1o
from this new point. now, our implementations of four algorithms were tested:

The fundamental ideas of this method and the namelglr?rsgcokls;mgzzgggf?)mzeg] ?lzr(ssioer?tffnvi'sls)élvgﬁa\éise:
live wire were developed in cooperation of groups around 9 o

Uaupa and Bt St en (199558, th civlopment17! S5 . #10  E e (e 1), e
continued independently and Mortensen and Barrett [15] in- hi ’h i ted b 'y FI) ith luati '
troduced the namiatelligent scissorsThe important prin- which are hot supported by precise aigorithm evauation.
ciples used by Falcao et. al. [5] are: )

The boundary is an oriented, closed and connected pla4-1- Tests of threshold-morphological method for
nar contour. It is formed from a subset of oriented edges bone removal
such that the sum of the costs of these edges is minimal. The
oriented pixel edge is defined between each pair of four- The bone removal is very usefull mainly for the visual-
adjacent pixels. The oriented pixel edge element, which isization using a maximum intensity projection (see Figure 4).
a part of the boundary, is calldzkl, a boundary element. If used as a preprocessing step for vessel segmentation, in-
Each beb = (q,r) has its location (between pixaisandr) correctly removed vessel parts may appear, caused by the
and orientation (such thatis always inside the boundary). applied thresholding. The following vessel segmentation
Each belb is assigned @ostb), computed from the se- algorithm may then suffer from false detected stenoses and
lected set of bel features. Details about the computation offrom a problem of jumping over gaps in the data. The distort
the costs, about the possible training phase and also the exvessel shape would also affect the following measurements.
planation of the relation to intelligent scissors [15] are given A combined bone segmentation and removal method,
in [6]. Pixels and bels form nodes and arcs of a weighted which uses a two-phase thresholding and region growing
directed graph. A modified Dijkstra’s minimal cost path al- followed by average-value and region-size based labeling,

gorithm is used. was tested with very promissing results [12, 13]. The

For speeding up of the interaction times, Falcao et al. [5] method works in slabs to achieve interactivity. The method
proposed a method calldive wire on the fly(LWOF), cannot handle variations of intensities in the bone automati-
which computes the paths “on demand” according to the cally and has to allow a user interaction, as carefull settings
cursor position. of the segmentation parameters is still often necessary.
3.7. Knowledge-based 2D approach 4.2. Tests of vessel tracking by Wave

The application area is segmentation of vessels in DSA. A simplified version of this approach with an adaptive

The development of a hierarchical heuristic method for thresholding by means of bimodal histogram without a cur-
a knowledge-based vessel segmentation from projections invature correction was implemented. Before application of
subtraction angiography was started by Cleynenbreugel ethis algorithm, it is necessary to enhance the contrast be-
al. [3], and continued in [4, 20]. The method applies a rule- tween the vessel and the background by setting of a correct
based system and segments the blood vessels via a multiwindowing (to select only an interval of data values).

stage approach. The algorithm without branching corrections was tested
The proposed multi-layered image representation [20] at the beginning of the bibliography search. A two-step seg-
has the following layers: Pixels> line segments—+ ves- mentation was used: At first, the vessel surrounding was

sel parts— vessels— anatomically labeled vessels. masked out by the interval selection and then the vessel



tracking itself was performed. The masking of the volume  But the 3D filtering step, which enhances tubular struc-
had the comparable effect as the process of windowing.  tures of diameter from a given interval and even detects the

The algorithm was successful for the parts of the leg vessel diameter, can be used in two places: In the modifica-
starting below the knee and ending at the lower part of thetion of the live wire vessel tracking (see Chapter 4.6) as a
body if the windowing/masking isolated all the bridges to supporting feature helping in the detection of "being in the
the surrounding tissues (The simplest dataset was No. 2vessel”, or as a post-processing step for a precise position-
which has higher resolution—see two right panels in Fig- ing of the detected path (e.g., the minimal path) to obtain a
ure 3). The algorithm stopped very often in small vessels in true centerline of the vessel.
the lower part of the foot as the vessel was no more homo- For large diameters the vesselness method is precise
geneous enough due to the noise and maybe the partial volenough (carotid arteries). For small vessels of diameter of
ume artifact (see Figure 3 left). Also if the vessel touched 2—3 voxels (like in brain or foot), the Hessian is not com-
the bone in the abdomen or if a star-like reconstruction ar- puted in the correct centers of the vessels, but in the cen-
tifact was present, it spread into the surrounding tissue orters of sampled voxels, and the variation of anisotropy term
even filled up the whole 3D dataset. Another important Ry = |A2|/|A3| is therefore too high [14].
disadvantage was a non-predictable erosion of the detected 2D tests showed that the operator enhances the vessels
vessel caused by ignoring the voxels out of the windowing of the selected diameter. But it also turned out that the im-
interval. age has to be extended to omit false edge responses on the
borders, which slows down the filtering.

Frangi et al. used snakes for the vessel extraction from
the vesselness data. It should prefer detection of smooth
vessel centerlines, i.e., should work globally in a local
neighborhood. This may be useful for jumps over bifur-
cations or calcifications.

4 4. Real-time vessel enhancement

This algorithm differs from the Frangi's vessel enhance-
ment by application of different derivative kernels, with dif-
ferent widthw and lengthl. The authors also use integer
arithmetic and a sophisticated decomposition of the kernels
into addition of a large number of responses of only 2-pixel
kernels, which results in a real-time vessel segmentation.

Surprisingly, Poli et al. do not use the kernels over the
range of scaleg but only foro = 1! Also the best com-

We suspect that the windowing, which is necessary to Promise values of = 1,w = 2,1 = 2, seem to be relatively
achieve any meaningful result, can suppress the adaptive'ange, as they negate the scale-space approach.
thresholding to minimal influence and can cause an unpre- | N€ ideas of optimal computation of the convolutions are
dictable erosion of the detected vessel. The detection ofNSPirative and should be in mind if any filtering approach
small vessels is then very hard (see limited length of ves-Will be applied.
sels in the left panel in Figure 3) and the algorithm with-
out branching corrections reduces itself back to the region4.5. Direct vessel tracking
growing. Also due to a very low interactivity and many
fails caused by the locality of the algorithm it was realized = This method is the only one in this paper that was di-
not to continue in testing and not to use this algorithm for rectly applied to CTA data. It seems to be very interesting,

Figure 3. Datasets No. 1 (left) and 2 (right) and
segmented vessels

the project. as it does not search the whole data volume but only the
promising part, where the vessel should be located. It also
4.3. Test of vessel enhancement handles the calcifications in CTA with a correct estimate of

the outer border of calcifications, ignores perpendicularly
The algorithm has been developed for MRA vessel seg- outgoing vessels as they have a low contribution to the like-
mentation where no signal from bone is present, and espeiihood, selects one vessel in bifurcations (no wrong turnings
cially for abdomen, where the vessels have a large diameteror leaving of the vessel), and estimates the vessel diameter.
As bone is present in the CTA datasets, the approach cannot On the other hand, the method was used for vessels with
be applied directly. a large diameter in abdomen, which is not our case. Also the



necessity of permanent user interaction may be a drawback#
in the large datasets. It needs a simultaneous visualizatio
and a specialized user interface.

4.6. Tests of modified Live wire

We have proposed a modification [13] of the original al-
gorithm in order not to search thmundarybut the path
through ahomogeneous regiom a given window of val-
ues. That means thpath through the vessel

The proposed modification needs an interactive selection
of a start-point and a set of end-points: the start-point in
the abdominal aorta and the end-points at the ends of the
tracked vessels. Then, the shortest path search between the

start-point and all the points in the image (graph) is per-  Figure 4. Dataset No. 8: Direct volume ren-

formed. The algorithm prefers homogeneity (smallest dif-  dering, MIP with bone, MIP without bone, and
ference of values) and jumps out of the given window are  Curved Planar Reformation of one vessel

highly penalized (to prevent tracking in the false, but homo-
geneous regions of different tissues). The algorithm works
very intuitively, the user interaction is concentrated to the .
beginning of the session, which saves time of the operator.5- Conclusions
After the processing of the dataset, the paths between start
and all end-points are drawn. At this point, any shortestpath  The paper summarized the information about angiogra-
from the start-point to any other end-point can be found in- phy datasets acquired by a spiral CT scanner and about the
teractively. appearance of vessels of interest in these datasets. Then
The algorithm was tested on 2D and 3D datasets withit described seven methods for segmentation of vessels in
promising results. It detects vessels with a high probabil- medical datasets found in literature and discussed their ap-
ity of success (see an example of curved planar reforma-plicability to the task of CTA vessel segmentation.
tion generated from one detected vessel in the right panel of  Thethresholding-morphological methadas not usable
Figure 4). On the contrary, a non-optimized version needsfor vessel segmentation, but was advantageously applied for
a large amount of memory, which is now solved by swap- pone removal for MIP visualizationWave vessel-tracking
ping to disk. Also a modification of any point inside the was too slow for large datasets with lower reliability in com-
vessel means the setting of this point as a starting one angharison to the shortest-path search between given pairs of
the complete re-computation of the shortest path (sub-)treepoints. The vessel enhancement metrethanced bone
The graph parameters are fixed, i.e., no tuning according tomore than vessels in CTA datasets. But it can be used

the dataset via a teaching phase is supported. as a supporting feature for vessel centerline detecion. We
assume that theeal-time vessel enhancemembuld work
4.7. Knowledge-based approach similarly as the vessel enhancement method. The principles

used indirect vessel trackingere used for vessel centerline

This approach was not tested, i.e., only some notes fol-detection and not for vessel tracking itself, mainly as the
low. lower extremity arteries have a substantially smaller diam-

Cleynenbreugel/Smets processed the 2-dimensionakter and also the user interaction cannot be concentrated to
DSA datasets and used a thin-vessel detection by the maxthe beginning of the session. Theowledge based method
imal image-intensity detector. This detector is not applica- was too specialized for 2D case, which is not necessary in
ble to CTA, as the whole 3D dataset is processed and no 2Dcase of CTA. The most promising approach is the modifica-
MIP of vessels exists. The approach seems to be robust, agon of thelive wire methodor vessel detection.
it combines a bottom-up approach with a feedback based re- After the tests, we have decided to use two methods; a
calculation and re-labeling and applies not only the geomet-bone removal for MIP projection generation and the combi-
rical but also the anatomical knowledge. On the other hand,nation of approaches of live wire and direct vessel tracking
segmentation of the whole 3D CTA datasets is more simplefor vessel and its centerline detection. Preliminary results
as it does not need to deal with overlapping and crossinghave already been published in [12] and [13]. In the future
of vessels caused by a 2D projection of a 3D object (as inwe will concentrate on tuning of the implemented methods
DSA). and tests in the clinical environment.
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