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Abstract

In this paper, we describe the results of the literature re-
view focused on the peripheral vessel segmentation in 3D
medical datasets, acquired by Computer tomography an-
giography (CTA) of the human leg.

The fundamental aim of such a segmentation task is a
robust method for the detection of main vessels in the leg
that simultaneously preserves the vessel calcification (the
sediment is called plaque) and allows localization of vessel
narrowings (called stenoses). This segmentation has to be
free from artifacts, i.e., without false detections of stenoses
and without false omitting of any stenotic part. The paper
collects seven methods applicable for vessel segmentation.

1. Introduction

The aim of the running project is to develop a fast and
robust method for vessel and calcification segmentation,
which requires a minimum of user interaction or concen-
trates the interaction into a minimal number of interven-
tions. The method will be used for diagnosis of periph-
eral arterial occlusive disease (PAOD), a serious disease of
modern ages, which can be treated by surgery, if the details
about vessels and calcifications are known. The input 3D
datasets are acquired by Computer Tomography Angiogra-
phy (CTA).

The aim of this paper is a literature research on the topic
of vessel segmentation and information about the prelimi-
nary tests of interesting methods. It gives an overview of
methods dealing with different kinds of vessel segmenta-
tion, i.e., not only with peripheral vessels and not only for
CTA, as described later. The reasons are twofold: Firstly,
only very few articles about CTA exist (or have been found
by the authors), and secondly, the principles of 3D segmen-
tation methods from different modalities can be adapted for
the goal of the CTA segmentation.

The presented text has the following structure: In Sec-
tion 2, we briefly characterize the acquisition technique,

nine datasets available for testing and the appearance of ves-
sels in the dataset. In Section 3, we describe the methods
for vessel segmentation found up to now. In Section 4, we
discuss experiences and potentials of each method for the
task of peripheral vessels CTA segmentation. Conclusions
follow in Section 5.

2. Data Acquisition and Description

Computer tomography angiography (CTA) reconstructs
a whole 3D volume from a large amount of X-ray projec-
tions. The main arguments for CTA in the diagnosis of
PAOD are its non-invasiveness, ability to visualize calcifica-
tion, lower costs of the whole examination, (currently) bet-
ter spatial resolution than magnetic resonance angiography
(MRA), better availability of CTA compared to MRA, and
less amount of contraindications (e.g., metal foreign bod-
ies). The first three arguments are essential also in compar-
ison to the current “gold standard technique”—digital sub-
traction angiography (DSA).

On the other hand, the amount of data produced by CTA
is huge (typically about 512x512x(900–1500) slices, which
occupy 450–750 MB of memory). To be able to apply this
technique in clinical praxis, such amount of data can not
be processed manually and a fast and robust vessel tracking
method is necessary.

The tracking method has to take the following aspects
into account. The signal from vessels enhanced by an injec-
tion of the contrast agent is not homogeneous—one reason
is the soft and calcified plaque present in the vessels, which
blocks the distribution of the contrast agent, second is the
quality of the injection protocol. The scanning resolution
causes a partial volume artifact (PVA), when smaller struc-
tures share one sampling voxel and their “average” variable
is reported. The density values of enhanced vessels overlap
with values of low density bone and marrow, the same is
true also for calk and bone. The vessel diameter varies dras-
tically, from 45 in abdomen down to 1 voxel in the lower
part of the leg. Complications cause also the spatial vicinity
of vessel and bone and a fuzzy border between the vessel
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Figure 1. First three datasets in a 3D view

and the bone.

We have tested four of the the algorithms on nine datasets
in sizes from 169 to 1134 slices (a typical CTA dataset has
900–1500 slices), representing the typical covered volume
of (250 to 380)2� (500 to 1000) mm3. Slice resolution
(slice pixel size) from 0.25 for a detailed dataset to a typ-
ical pixel size of 0.5 to 0.75mm. Best segmentation results
were achieved for 2 mm thick reconstructed slices of 1 mm
spacing. The collimation of the 4-detector CT scanner was
mostly set to 2.5 mm, better results were achieved for 1 mm.
The first three datasets are shown in a 3D view in Figure 1.

A typical outer vessel shape is circular or slightly ellip-
tical. If calcification is present, it is situatedin the vessel
and the inside profile becomes considerably irregular. The
densities are measured by CT in Hounsfield Units (HU). In
our CTA datasets, the vessel blood with a contrast agent has
the densities varying from 150 to 260 HU, the non-calcified
plaque has about 80 HU and the calcified plaque deposits
about 320 HU–1500 HU.

The vessel density distribution in a manually selected
vessel in the left leg (see Figure 2) shows two large drop-
downs in the density values, above the knee (slices 380–
530) and in the upper part close to the hip (slices 685–
741). These decreases of the contrast agent concentrations
are caused by two stenoses, which drastically reduce the
blood flow and therefore also the concentration of the con-
trast agent. The blood flow is spread into small collateral
vessels. Below the large stenosis above the knee, blood
returns to the vessel and the concentration increases back.
In fact, it is even higher, since the contrast agent cumulates
its concentration here.

Figure 2. Topogram image of dataset No. 8
with a dark line indicating the manually seg-
mented vessel of the left leg and the voxel
density values along the vessel together with
the average values of density from a 3x3 sur-
rounding of the center-path

To get a clearer picture of how the vessels are represented
in the datasets see [8], more details about one of the datasets
can be found in[7].

3. Vessel Segmentation Methods

In this section we summarize the knowledge obtained
from the literature review on the topic of vessel segmen-
tation. The goal is a robust method for the vessel segmen-
tation from CTA datasets. Since only few technical articles
using this modality for a vessel display were found, this sec-
tion collects everything about segmentation of vessel ob-
jects obtained until now, describes the principles and tries
to depict problematic steps of each method. Most of the
methods described in studied articles deal with DSA (digi-
tal subtraction angiography) and MRA (magnetic resonance
angiography).

For details about the methods read this section, for dis-
cussion about their applicability in the task of 3D vessel
segmentation see Section 4.

3.1. Threshold-morphological method

The outline of this section results from personal commu-
nications with MilošŠrámek from the Austrian Academy of
Sciences. As already mentioned in Section 2, both tissues of
interest, namely vessels and calcifications, overlap in their
CT density range with bone tissue. Therefore, a technique
capable of independent labeling of all three tissue types is



necessary. In general, two complementary strategies can
be followed: An indirect one, in which the bone tissue is
identified and removed from the CT data by means of mask-
ing. In this case vessels and calcifications remain the tissues
with the highest voxel density, which enables a straightfor-
ward application of subsequent processing and visualization
techniques. And a direct one, in which the vessels and calci-
fications are segmented and labeled from the original data.

Šrámek prefers the indirect approach since bones are
much thicker objects than vessels and, therefore, their seg-
mentation is less sensitive to imaging artifacts (partial vol-
ume effect), and bone segmentation errors do not have so
dramatic consequences as the segmentation of vessels can
have (e.g., missing vessel segments).

According to the nature of the CTA data,Šrámek recom-
mends a thresholding, supplemented by morphologic op-
erations and a connected component labeling as the most
promising segmentation technique.

3.2. Wave vessel tracking

The application area of Wave algorithm is vessel tracking
in CTA, MRA (vessels of liver).

Cornelia Zahlten described the Wave vessel tracking al-
gorithm in her PhD thesis[26]. She mentioned two ap-
proaches and used the second one:

I. Hysteresis thresholding with skeletonization and
symbolic graph [11, 21]. Object pixels are selected by
hysteresis thresholding: The histogram is divided into three
parts—object, background, and overlapping part. Pixels
from the overlapping part are added to the object only if
they are connected to object pixels. The object is then skele-
tonized by erosions and the distance transformation is then
computed to determine the diameter of the vessels. Finally,
a symbolic description via a graph is constructed, where the
vessel bifurcations and vessel ends are represented as nodes
and the vessel segments as links of the graph.

II. Region growing with simultaneous graph genera-
tions [26].This is a region growing approach enriched by
bifurcation detection and vessel graph generation. At first,
a seed point is put interactively near the root of the vessel
tree. Then, the wave goes through the object. The wave is
a connected list of voxels belonging to the vessel that have
been added in the current step. Until now it is a normal
flood-fill algorithm with 26-connectivity voxels, each voxel
remembers where the wave has come from (26 binary la-
bels) and the wave direction correction can be applied for
high curvature vessels.

The major difference to the classical region growing is in
the bifurcation detection and the simultaneous graph con-
struction. If the voxels in the wave (newly added voxels in
current step) are not mutually connected, the bifurcation (n-
furcation) is detected and an appropriate number of nodes

(one for each branch) is created and inserted to the graph.
The new wave parts are sorted according to the number of
voxels and processed from the largest to the smallest one.
This results in the construction of the vessel tree in a top-
to-bottom order. Each new branch gets a new label, except
for the largest one (75% of the current wave), which holds
the current label. During the visualization step each label is
assigned a different color to show the hierarchy in the vessel
tree.

For a correct branch detection (to avoid over-branching
in places with a high vessel curvature), the wave correction
is necessary to assure the next wave step would be perpen-
dicular to the actual vessel diameter. Details in [25, 26].

3.3. Vessel enhancement and tracking

The application area is vessel segmentation of abdominal
and carotid arteries in MRA.

The principle of this three stage algorithm ([9, 10], sim-
ilar approaches [14, 18, 19, 22]) is at first to do a prepro-
cessing of the dataset by a 3D filter (vesselness operatorV ),
which enhances tubular structures, then to track the tubular
structures in 3D space by finding the path with a minimal
cost, which goes through the centerline of the vessels, and
finally to detect the vessel borders.

The vesselness enhancement filterV of Frangi et.
al. [10] is based on the eigenvalues of a Hessian matrix (a
matrix of partial secondary derivatives) evaluated in each
pixel of the image in different scalesσ. Its response is max-
imal when the scale of the operator matches the size of the
vessel. Therefore the operator simultaneously depicts the
vessel size.

For each voxel, the filtering is done in different scales
σ2 hσmin;σmaxi as follows: After computation of the eigen-
values, they are ordered so thatjλ1j < jλ2j < jλ3j. The re-
specting eigenvectors~u1;~u2 and~u3 then point out the singu-
lar directions:~u1 along the vessel, and~u2,~u3 the directions
in an orthogonal plane. The value of the vesselness opera-
tor V (x;σ) is than computed and the highest response over
the scales is reported as the response of the vesselness fil-
ter V (x). The scaleσ whereV (x;σ) reaches its maximum
determines the size of the vessel with center in voxelx.

The value of vesselness operatorV (x;σ) for a given
scaleσ in voxel x is for brighter vessels in the darker en-
vironment defined as:

V (x;σ) = 0 : : : if jλ2j> 0 or jλ3j> 0;

= [1�exp(�R2
A=2a2)]exp(�R2

B=2b2)[1�

exp(�S2=2c2)] : : : otherwise.

The operator consists of three parts normalized to have
the response in intervalh0;1i:

� Anisotropy termRA = jλ2j=jλ3j should be close to 1
(reflects the cross-sectional symmetry).



� BlobinessRB = jλ1j=
p
jλ2jjλ3j should be small.

� Degree of image content
S=
p
jλ1j2+ jλ2j2+ jλ3j2 should be large.

Parametersa;b;c tune the sensitivity of the filter to de-
viations in RA;RB and S. Typical values used in [10] are
a = b = 0:5 andc = one half of the maximal Frobenius
norm of the Hessian matrices, i.e., one half of the length of
the vector of lambdas(λ1;λ2;λ3). Another possibility is to
use a normalization by the maximal intensity 0:25σ2Imax.

The operator enhances the tubular structures, filters out
blobs and plateau-like structures, but also reduces the vessel
diameter, has dropouts at bifurcations (detects them as to be
plate-like) and is highly sensitive to bones and calcifications
in CTA datasets.

After filtering by a vesselness operator, the vessel cen-
terline is detected by 3D snakes and modeled by B-spline
curves, then the vessel wall is segmented and modeled by a
tensor product B-spline surface.

3.4. Real time vessel enhancement

The application area is real-time segmentation of DSA
images. The principle of this method published by Poli and
Valli [16, 17] is similar to the approach of Frangi et al. (see
Section 3.3). Both use Gaussian filters in different scales
for vessel enhancement. Cagnoni et al. [1, 2] applied then
a genetic algorithms optimization. The main points of Poli
and Valli’s algorithm are:

� Application of directional filterswith different half-
widthsw and half-lengthsl (= kσ; k= 1;2; : : :).

� Separation of the Gaussian filtercomputation into
atomic filter computations, to achieve areal-time re-
sponse(convolution is a linear operation, so a convo-
lution with a big kernel can be done by addition of the
results of convolutions from two smaller filters,. . . ).

� Application of avalidation step to ignore the response
to step edges—the filter response is accepted if also
two pixels in the distance�v perpendicularly to~n are
outside of the vessel, i.e., have lower values than a cen-
tral pixel. The distancev should be larger then the
largest structure of interest. This step removes nega-
tive values near the vessel borders and noise, but also
thin vessels after branching from the thick ones.

� Hysteresis thresholding of the validated images helps
if the noise is too high.

To reduce the filtering artifacts, the authors decompose
the directional derivatives not only in two directions but
in four~n= [1;0]; [0;1]; [

p
2

2 ;
p

2
2 ]; [

p
2

2 ;�
p

2
2 ] and as a result,

they take a maximum response over all~n;w; l . According

to their test image, where the best parameter setting was
σ = 1;w= 2; l = 2, it seems thatno integration over set of
scales is necessary!

3.5. Direct vessel tracking in 3D

The application area is CTA of abdominal aorta and
MRA.

Wink et al. [24] described an interactive segmentation
method, which works locally, without preprocessing of the
whole dataset and needs about 10s per vessel. The user se-
lects two start-pointsA andB in the thick part of a vessel
and runs the tracking algorithm. The points give a possible
direction of the vessel centerline~a = B�A. The method
estimates the position of the next candidate pointC in the
direction of vector~a, in the distanceb based on the current
minimal vessel diameterdmin. Preciselyb = αdmin, where
α is a given constant.

Then the precise position of a new pointCnew is com-
puted. In the square surroundings of the candidate pointC,
which is perpendicular to the vessel axis direction~a, they
compute for each point the likelihood that it is a center point
of the vessel. This is done by casting of a fan of rays from
each point in the square. Each ray ends at voxel that localy
looks as the vessel border. Then, they detect the most pos-
sible vessel center pointCnew in this square and store this
new position as a new centerline end. It becomes the part of
up-to-now detected vessel and a new candidate point is gen-
erated in the computed axis direction. The estimated point
C need not to lie inside of the vessel—it is sufficient when
the true vessel center lies in the square around it [24, Fig. 8].
The sizes of this square is computed ass= βb, whereβ is
another given constant.

The center likelihood is computed as follows: For each
pair of rays in opposite directions the likelihood of being-
a-center is computed as a ratio of the shorter to the longer
of the distances to the vessel border. The border is detected
as a falling gradient in the same direction as the direction of
the ray. This has an advantage since using this approach the
border of bright vessel or the end of calcification is found.

The authors also proposed a possibility toforce a search
direction to the central vessel direction, tolimit the curva-
ture of a vesselby a coefficient and tosearch a whole treeof
possible vessels and continue in the direction of the highest
sum of center likelihoods. They also proposed an approach,
which is based on the same principle as our modification
of the live wire method (see Section 4.6)—namely to de-
fine start- and end-points and to find the vessel centerline
by the use of the dynamic programming or tree search. The
more points are defined, the more the searched data space
is reduced. A similar tracking approach calledimaginary
catheterwas published as a work in progress by Verdonck
et al. [23].



3.6. Live wire and Intelligent scissors

The application area is a boundary segmentation of any
object.

The live wire (LW) method [5, 6] was originally de-
signed for a 2D interactive segmentation ofboundariesin
difficult images with faint signal of boundaries or even gaps
in boundaries, for objects with similar boundary properties
around them, and for regions distorted by noise. In gen-
eral, it speeds-up the user interaction by interactive offering
the boundary segments between the user defined start-point
and the current position of the cursor. After selection of
the end-point of the segment, it becomes a new start-point
and the whole process of boundary segment selection starts
from this new point.

The fundamental ideas of this method and the name
live wire were developed in cooperation of groups around
Udupa and Barrett. But then (1995/96), the development
continued independently and Mortensen and Barrett [15] in-
troduced the nameintelligent scissors. The important prin-
ciples used by Falcao et. al. [5] are:

The boundary is an oriented, closed and connected pla-
nar contour. It is formed from a subset of oriented edges
such that the sum of the costs of these edges is minimal. The
oriented pixel edge is defined between each pair of four-
adjacent pixels. The oriented pixel edge element, which is
a part of the boundary, is calledbel, a boundary element.
Each belb= (q; r) has its location (between pixelsq andr)
and orientation (such thatq is always inside the boundary).
Each belb is assigned acost(b), computed from the se-
lected set of bel features. Details about the computation of
the costs, about the possible training phase and also the ex-
planation of the relation to intelligent scissors [15] are given
in [6]. Pixels and bels form nodes and arcs of a weighted
directed graph. A modified Dijkstra’s minimal cost path al-
gorithm is used.

For speeding up of the interaction times, Falcao et al. [5]
proposed a method calledlive wire on the fly(LWOF),
which computes the paths “on demand” according to the
cursor position.

3.7. Knowledge-based 2D approach

The application area is segmentation of vessels in DSA.
The development of a hierarchical heuristic method for

a knowledge-based vessel segmentation from projections in
subtraction angiography was started by Cleynenbreugel et
al. [3], and continued in [4, 20]. The method applies a rule-
based system and segments the blood vessels via a multi-
stage approach.

The proposed multi-layered image representation [20]
has the following layers: Pixels! line segments! ves-
sel parts! vessels! anatomically labeled vessels.

An important aspect is the splitting of large amount of
available heuristic knowledge into separate blocks, which
simplifies integration of new heuristic models. Also the
feedback strategy, which allows re-computation of missing
attributes and the updating of interpretation labels makes
the method more robust.

4. Applicability of the Methods

In this section, we describe our experience with the al-
gorithms described in Section 3 and collect our opinions
about the applicability of described methods to the task of
vessel segmentation in CT angiography datasets. Up to
now, our implementations of four algorithms were tested:
Threshold-morphological method (Section 4.1), wave ves-
sel tracking (Section 4.2), 2D version of vessel enhance-
ment (Section 4.3), and a live wire (Section 4.6). There-
fore, about the other methods only opinions are mentioned,
which are not supported by precise algorithm evaluation.

4.1. Tests of threshold-morphological method for
bone removal

The bone removal is very usefull mainly for the visual-
ization using a maximum intensity projection (see Figure 4).
If used as a preprocessing step for vessel segmentation, in-
correctly removed vessel parts may appear, caused by the
applied thresholding. The following vessel segmentation
algorithm may then suffer from false detected stenoses and
from a problem of jumping over gaps in the data. The distort
vessel shape would also affect the following measurements.

A combined bone segmentation and removal method,
which uses a two-phase thresholding and region growing
followed by average-value and region-size based labeling,
was tested with very promissing results [12, 13]. The
method works in slabs to achieve interactivity. The method
cannot handle variations of intensities in the bone automati-
cally and has to allow a user interaction, as carefull settings
of the segmentation parameters is still often necessary.

4.2. Tests of vessel tracking by Wave

A simplified version of this approach with an adaptive
thresholding by means of bimodal histogram without a cur-
vature correction was implemented. Before application of
this algorithm, it is necessary to enhance the contrast be-
tween the vessel and the background by setting of a correct
windowing (to select only an interval of data values).

The algorithm without branching corrections was tested
at the beginning of the bibliography search. A two-step seg-
mentation was used: At first, the vessel surrounding was
masked out by the interval selection and then the vessel



tracking itself was performed. The masking of the volume
had the comparable effect as the process of windowing.

The algorithm was successful for the parts of the leg
starting below the knee and ending at the lower part of the
body if the windowing/masking isolated all the bridges to
the surrounding tissues (The simplest dataset was No. 2
which has higher resolution—see two right panels in Fig-
ure 3). The algorithm stopped very often in small vessels in
the lower part of the foot as the vessel was no more homo-
geneous enough due to the noise and maybe the partial vol-
ume artifact (see Figure 3 left). Also if the vessel touched
the bone in the abdomen or if a star-like reconstruction ar-
tifact was present, it spread into the surrounding tissue or
even filled up the whole 3D dataset. Another important
disadvantage was a non-predictable erosion of the detected
vessel caused by ignoring the voxels out of the windowing
interval.

Figure 3. Datasets No. 1 (left) and 2 (right) and
segmented vessels

We suspect that the windowing, which is necessary to
achieve any meaningful result, can suppress the adaptive
thresholding to minimal influence and can cause an unpre-
dictable erosion of the detected vessel. The detection of
small vessels is then very hard (see limited length of ves-
sels in the left panel in Figure 3) and the algorithm with-
out branching corrections reduces itself back to the region
growing. Also due to a very low interactivity and many
fails caused by the locality of the algorithm it was realized
not to continue in testing and not to use this algorithm for
the project.

4.3. Test of vessel enhancement

The algorithm has been developed for MRA vessel seg-
mentation where no signal from bone is present, and espe-
cially for abdomen, where the vessels have a large diameter.
As bone is present in the CTA datasets, the approach cannot
be applied directly.

But the 3D filtering step, which enhances tubular struc-
tures of diameter from a given interval and even detects the
vessel diameter, can be used in two places: In the modifica-
tion of the live wire vessel tracking (see Chapter 4.6) as a
supporting feature helping in the detection of ”being in the
vessel”, or as a post-processing step for a precise position-
ing of the detected path (e.g., the minimal path) to obtain a
true centerline of the vessel.

For large diameters the vesselness method is precise
enough (carotid arteries). For small vessels of diameter of
2–3 voxels (like in brain or foot), the Hessian is not com-
puted in the correct centers of the vessels, but in the cen-
ters of sampled voxels, and the variation of anisotropy term
RA = jλ2j=jλ3j is therefore too high [14].

2D tests showed that the operator enhances the vessels
of the selected diameter. But it also turned out that the im-
age has to be extended to omit false edge responses on the
borders, which slows down the filtering.

Frangi et al. used snakes for the vessel extraction from
the vesselness data. It should prefer detection of smooth
vessel centerlines, i.e., should work globally in a local
neighborhood. This may be useful for jumps over bifur-
cations or calcifications.

4.4. Real-time vessel enhancement

This algorithm differs from the Frangi’s vessel enhance-
ment by application of different derivative kernels, with dif-
ferent widthw and lengthl . The authors also use integer
arithmetic and a sophisticated decomposition of the kernels
into addition of a large number of responses of only 2-pixel
kernels, which results in a real-time vessel segmentation.

Surprisingly, Poli et al. do not use the kernels over the
range of scalesσ but only for σ = 1! Also the best com-
promise values ofσ = 1;w= 2; l = 2, seem to be relatively
strange, as they negate the scale-space approach.

The ideas of optimal computation of the convolutions are
inspirative and should be in mind if any filtering approach
will be applied.

4.5. Direct vessel tracking

This method is the only one in this paper that was di-
rectly applied to CTA data. It seems to be very interesting,
as it does not search the whole data volume but only the
promising part, where the vessel should be located. It also
handles the calcifications in CTA with a correct estimate of
the outer border of calcifications, ignores perpendicularly
outgoing vessels as they have a low contribution to the like-
lihood, selects one vessel in bifurcations (no wrong turnings
or leaving of the vessel), and estimates the vessel diameter.

On the other hand, the method was used for vessels with
a large diameter in abdomen, which is not our case. Also the



necessity of permanent user interaction may be a drawback
in the large datasets. It needs a simultaneous visualization
and a specialized user interface.

4.6. Tests of modified Live wire

We have proposed a modification [13] of the original al-
gorithm in order not to search theboundarybut the path
through ahomogeneous regionin a given window of val-
ues. That means thepath through the vessel.

The proposed modification needs an interactive selection
of a start-point and a set of end-points: the start-point in
the abdominal aorta and the end-points at the ends of the
tracked vessels. Then, the shortest path search between the
start-point and all the points in the image (graph) is per-
formed. The algorithm prefers homogeneity (smallest dif-
ference of values) and jumps out of the given window are
highly penalized (to prevent tracking in the false, but homo-
geneous regions of different tissues). The algorithm works
very intuitively, the user interaction is concentrated to the
beginning of the session, which saves time of the operator.
After the processing of the dataset, the paths between start
and all end-points are drawn. At this point, any shortest path
from the start-point to any other end-point can be found in-
teractively.

The algorithm was tested on 2D and 3D datasets with
promising results. It detects vessels with a high probabil-
ity of success (see an example of curved planar reforma-
tion generated from one detected vessel in the right panel of
Figure 4). On the contrary, a non-optimized version needs
a large amount of memory, which is now solved by swap-
ping to disk. Also a modification of any point inside the
vessel means the setting of this point as a starting one and
the complete re-computation of the shortest path (sub-)tree.
The graph parameters are fixed, i.e., no tuning according to
the dataset via a teaching phase is supported.

4.7. Knowledge-based approach

This approach was not tested, i.e., only some notes fol-
low.

Cleynenbreugel/Smets processed the 2-dimensional
DSA datasets and used a thin-vessel detection by the max-
imal image-intensity detector. This detector is not applica-
ble to CTA, as the whole 3D dataset is processed and no 2D
MIP of vessels exists. The approach seems to be robust, as
it combines a bottom-up approach with a feedback based re-
calculation and re-labeling and applies not only the geomet-
rical but also the anatomical knowledge. On the other hand,
segmentation of the whole 3D CTA datasets is more simple
as it does not need to deal with overlapping and crossing
of vessels caused by a 2D projection of a 3D object (as in
DSA).

Figure 4. Dataset No. 8: Direct volume ren-
dering, MIP with bone, MIP without bone, and
Curved Planar Reformation of one vessel

5. Conclusions

The paper summarized the information about angiogra-
phy datasets acquired by a spiral CT scanner and about the
appearance of vessels of interest in these datasets. Then
it described seven methods for segmentation of vessels in
medical datasets found in literature and discussed their ap-
plicability to the task of CTA vessel segmentation.

The thresholding-morphological methodwas not usable
for vessel segmentation, but was advantageously applied for
bone removal for MIP visualization.Wave vessel-tracking
was too slow for large datasets with lower reliability in com-
parison to the shortest-path search between given pairs of
points. The vessel enhancement methodenhanced bone
more than vessels in CTA datasets. But it can be used
as a supporting feature for vessel centerline detecion. We
assume that thereal-time vessel enhancementwould work
similarly as the vessel enhancement method. The principles
used indirect vessel trackingwere used for vessel centerline
detection and not for vessel tracking itself, mainly as the
lower extremity arteries have a substantially smaller diam-
eter and also the user interaction cannot be concentrated to
the beginning of the session. Theknowledge based method
was too specialized for 2D case, which is not necessary in
case of CTA. The most promising approach is the modifica-
tion of thelive wire methodfor vessel detection.

After the tests, we have decided to use two methods; a
bone removal for MIP projection generation and the combi-
nation of approaches of live wire and direct vessel tracking
for vessel and its centerline detection. Preliminary results
have already been published in [12] and [13]. In the future
we will concentrate on tuning of the implemented methods
and tests in the clinical environment.
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